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Abstract

In this article, we establish sufficient conditions for which the second order
nonlinear differential equation of the form [a(t)x']’ + Q(t,x) = P(t,x,x") is
oscillatory. Examples are given to validate some of the criteria.
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1. Introduction

Following the classic work of Atkinson [4] in the determination of oscillation criteria for second order nonlinear differential
equations, there has arisen a number of literature on this subject. Among these works, we refer specifically to [3, 4, 6 to 15].
In this paper, we are particularly concerned with the oscillatory behaviour of the second order nonlinear differential equations
of the form

[a@®)x'T + Q(t,x) = P(t,x,x") (1.1

Where a: [ty, ) > R, Q:[ty,©) X R » R and P: [ty5, ) x R?Z— R are continuous and a(t) > 0.

This paper improves and extends the results of [1] and more particularly, the results of [2] in obtaining oscillatory criteria for
(1.1). A solution of (1.1) is said to be oscillatory if it has infinity of zeros in the domain on which it is defined. Then egn.
(1.1) itself is said to be oscillatory if every solution of (1.1) is oscillatory. We shall only be concerned with solutions of the
differential equations (1.1) which exist on the interval [t,, ©), t, = 0. Also, the uniqueness of solutions of (1.1) is not
assumed.

2. Oscillation Theorems

Assume there exist continuous functions p, q: [ty, @) » Rand f : R - R such that

Xf(x) >0, x 0 (2.1)
FG)>k>0x#0 (2.2)
Q;tc'x)x) 2 q(t) and _P(t'f(fz')—x ! <o) forx % 0 23)

Theorem 1: .Suppose that conditions (2.1), (2.2) and (2.3) hold and let p be a positive continuously differentiable function
on the interval [t, o) such that p’ = 0 on [t,, ). Equation (1.1) is oscillatory if

lim Jt& =
t=e0 Ji a(s)

and

fwA(s)ds = ® (2.5)
t

0

where

(2.4)

2
Sl - p@] - g e®
Proof
Suppose that x(t) is a non-oscillatory solution of (2.1), say x(t) # 0 on the interval [t;, ©),t = t; = t,. We assume that
x(t) > 0on [ty, ). The case x(t) < 0 can be treated in a similar fashion and is therefore omitted.
But
[a(t)x’(t) " _ Plex(@®x'(®] _ eltx®] _ a(Of'xO][x' ©]"
flx@®)] flx(®)] flx(@®)] f2x(@®)]
Multiplying (2.6) by % and integratiog from t; to t, we obtain

A(t) =

(2.6)
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a(®)x'(t) tp'(s)al(s)x'(s) _f‘a(s)[x’(s)]zf’[x(s)] is @7)
ty

PO = o Lp()[q(s) p()]ds = f PO ] POIREO)
where
_ a(ty)x'(t,)
() f[x(ty)]
We set
= a(®)x'(t)
C pOf[x(0)]
and

p'()a(®)
@ = pOp(®) + 5 o5

Using the above identities, we have from condition (2.2)
a(®)x'(t) ‘1 O] @ 2]
O] = Pu Lp( 1) = p(eds - | 1[p(s) TEN

a(t)x'(t) t1 t ok p'(s)a(s)\
p(t)f[x(t)]SD Lp()["(s) s - | lp(s)a(s)[‘pz(s)_< 2kp(s>>]ds

a(t)x'(t)
P O] = f Als)ds 28)

From condition (2 5), we see that
lim a(t)x'(t)
im— 7
too0 p(8)f[x ()]
Hence, there exist t, > t; suchthat x'(t) < 0fort > ¢,
Dividing through (1.1) by f[x(t)], we obtain
[a@®x'(®O)] _ Plt,x(@),x"(O)]  Q[t,x(®)]
fx®1 — flx®] flx®]
or
[a(®)x"(O)] < —f[x(©O][q(®) —p(®)] (2.9)
Multiplying (2.9) by % and integrating from t, to t, we obtain

a(t)x'(t) <p, _ftp’(S)a(S)x’(S)d
t.

p(t) p%(s)
’ t 1 t t 1
“(2(’;(“ <D, — flx(®)] f 6 ~pOls + ft RO ft 460~ pealduds @.10)
where
t)x'(t
thza(z)x(2)<0

P(tz)
Since ft o5 [q(s) p(s)]ds — o0 ast — oo (this is true from (2.5)), we may choose T > t, such that f ( ) [q(s) —

p(s)]ds = 0 and

¢ 1
N flx(s)] FO) lg(s) = p(s)lds

2

- ( S —[q(s) — p(s)lds = 0 for T = t,. Now with this choice of T, we get from (2.10)

t

S

f x'(s)ds < D, &ds
ty ’ [ a(s)

We see from condition (2.4) that

x(t) < x(t;) + Dy, pE ;ds—> —oast - o
=>x()<0
This contradicts the hypothesis that x(t) > 0. This completes the proof.
Example 1 Consider the differential equation

1 x* cos(x")
[a(®)x'] + [2t%2(3 + cos(t)) + t2x3]x = xt3sin(t) + —= gl

If we chose f(x) = x,a(t) =t?and p(t) =t

I
t=-
for >
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2 2.3
Qtx) _[2t*B +cos(®)) +t°x7 |x > 2t2(3 + cos(t)) = q(t)

fo x
and

1 x* cos(x)
P(t,x,x") B B +1

5 1
= xt3sin(t) + & < £¥sin(t) + 5 = p(6)

f)
Thus, forevery t > t, = g we obtain
t tr1 1 1 s
_ e — ¢3qin(s) — —] — — =
L]A(s)ds = J;O [s [25%(3 + cos(s)) — s3 sin(s) 55] Y 52] ds

t _ tq 1 (t1
=f —[252(3+cos(s))—s351n(s)]ds—f —6ds——f —ds
to S toS to S

0 0 0

¢

td 1 t
_ 2
= .[0 = [s2(3 + cos(s))]ds + o5 :

! 1
7 108(s)

T
2

m2 1 1,2\ 1 1 T
— $+2 _ _ IR R _ _
= t%[3 + cos(t)] — 3 (2) + 05 5(7_[) yye log(t) +4—k log (2)
> t2 3(”)2 1(2)5 !, ®)
= 2) T5\a) T4k %8
Thus, we see that

fwA(s)ds = o0

0
and

t t
lim @ds = f ids =
t>o ), a(s) to S°
We note that conditions (2.1) — (2.5) are satisfied. Hence, the differential equation is oscillatory.
Theorem 2
Suppose conditions (2.1) — (2.4) hold and let p be a positive continuously differentiable function on the interval [t, o) such

that p’ = 0 on [¢,, 0).1f

1
ft ol POl < o @211)
t
lim inf U A(s)ds| =0 foralllargeT (2.12)
t—>oo T
t oo
tll_)rg) J;O% i A(u)duds = o (2.13)
and
W o oamd [ Pcowf >0 (214
i f(y) an e f(y) or every .
where
1 1 p"%(t)
AQt) = E[Q(t) -p(®)] - Ema(t)

then all solutions of (1.1) are oscillatory.

Proof

Let x(t) be a non-oscillatory solution of (1.1), i.e. x(t) # 0. We assume that x(t) > 0 fort > t; = t,. Asin theorem 1, we
have from (2.8)

WO <b, - [ a0
— == - s)ds
p(Ofx@®]~ ",
We now consider the following three cases for the behaviour of x'(t).
Case1: x'(t) >0fort = b forsome b > t,
1f x'(t) > 0, then by condition (2.11), we have

a(b)x'(b) *©
Sm—jb A(s)ds fort=bh
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or
@ a(b)x'(b)
fb ASs < S )]

Hence, for all t > b, it follows that

© a(t)x'(t)
J, 40 <o
Now as t — oo and invoking condition (2.14),
lim ft@ x(t) d

b

t—ooo

<
a@ ), AOME=ED] T
This however is a contradiction since the integral on the left diverges by condition (2.13).
Case2: x'(t) =0forsomet >t > t,
x'(t) = 0 implies that there exist a sequence (t,,: n = 1,2,3...) on the interval [t,,), [t, = 0 such that : x'(¢t) < 0.
We now choose N sufficiently large such that (2.12) holds. Thus from (2.8),
OX® (s (2.15)
p(Of[x(©] = tn '
Taking the limit superior of (2.15), we obtain

tll_)rg su; p% hm sup Dy, + 11m sup[ ft A(s)ds]
a(t)x'(t)

gLrg Supp(t)f[x(t)] vt 11m sup [ f A(s)ds]

. a(t)x'(t)

gLrg p(t)f[x(t)] 11m inf [f A(s)ds]

<0
This is a contradiction since x'(t) oscillates.
Case 3: x'(t) < O0forsomet =t, = t;(=ty)
We note that condition (2.11) implies that for every T, = t,, there exist T; = T, such that f;%[q(s) —p(s)lds =
0 forallt=T,.
Multiplying (2.9) by L and integrating from t, to t, we obtain

Ox'(t
<0 [ RS e = [q() ~ p()ds - f OE < [q() — pw)lduds
a(t)x'(t) 1
WOR <Dy — flx (t)] oG )[q(s) p(s)lds +ft1x &f' [x(S)] Fo )[q(u) p(w)]duds
where

a(t)x'(t1)

D, =———=<0

f p(t1)
Thus

, p(t)
x'(t) < Dtlm (2.16)
Integrating (2.16) from T to t, we obtain
x(t) —x(T) < Dy, pg ;

= x(t) » —oas t — oo, This contradicts the hypothesis that x(t) > 0. This completes the proof.
Theorem 3: Suppose conditions (2.1) — (2.3) hold and assume there is a constant ¢ > 0 such that
P _
o < (2.17)
if Hm . fto 7 (u) [q(w) — p(u)]duds = o (2.18)
then all solutions of (1.1) are oscillatory.
Proof

Let x(t) be a non-oscillatory solution of (1.1) with x(t) # 0 for t > t; = t,. Then from (1.1)
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a(®)x' (1) DY) | (L@ OPF )]
p(t)f[X(t)]Jer()[q(s) ”(s)]d”f OO f PO S0 219
where

a(ty)x'(t;)

“ T o) flx ()]

Integrating (2.19) a second time from t; to t yields
‘ a(x'(s) AQLICZION a(s)[x' () f'[x(s)]
L OO f f pQay 1404 — P)]duds + ff R@I@] ff POIEEI0) B
<D, (t —ty)

or

t a(s)x'(s) s p'(Waw)x' (u)
fflp(S)f[x(S)]d s+ Jo Jo e (0G0 = pQlduds + ;[ £EES0 duds

f f a(w)[x' (W] 2f [x(w)]

t, Jt, pf2[x(w)]

Multiplying through (2.20) by % and invoking condition (2.2), we have

1t a(s)x'(s) 10875 1 1t Sp'(wa(u)x’' (u) a()[x'(w)]?

?L PO T ?ftl f pGuy 100 ~ plw)lduds + ?L f PO ff PG Feleu] 1S = P

From condition (2.18), we see that

y ff a(s)x'(s) ds

m — —

oo t )y p()flx(s)]

Now deflne

f a(s)x'(s)
— > = as

o P

Applying the Cauchy- Schwarz inequality, we obtain

; X))
o= f Felize)]

duds < Dyt (2.20)

R() = (2.21)

Thus
_R(t>+§f PSR (5)
t t

ds<0

t a(s)s
or
_RO) ke (RAG)

t t
Now we set

tRZ
p(t) = f ;S) ds
t

1

ds <0

t, S

then

2.2 !
k*c L (©)

t = e
Integrating (2.22) from t, to t where t, > t;, we obtain
K22l [t] < 1 1 < 1

clo — = - =

el = 0@ 0@~ o)

This is a contradiction as the left hand side of the inequality diverges as t — oo. Hence the proof.
Example 2. Consider the differential equation

(2.22)

Hx'] + [1 tl(z + cos(t)) + t2e3 t3 in(t) + L xcos”(x) t>2
—t2 = 2 _—_— —
[a(t)x'] > cos e’|x = xtzsin Py SR fort = >

If we choose f(x) =x,a(t) = t% and p(t) =t,
Q(t,x)
flx) —

and

—t2(2 + cos(t)) = q(t)
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P(t,x,x")
f(x)

Thus, for every t > t, = g we have
1005171 1 3 1
—f f —[—u2(2 + cos(u)) —uzsin(u) — —4] duds
tJey Jeo ul2 u
But
111 1 3 1
f — [—57(2 + cos(s)) — sZsin(s) — —4] ds
toS 2 s

3 1
< tzsin(t) + = p(t)

t d 1 t 1
= f ——52(2+cos(s))ds — | —ds
to ds s

to
s (012

R IR OREl

2
3
3 1 4
21 2/m31 T\2 1/2
> — (=) == — —[—
232607 6F +10)]
We clearly see that

jim 2 f ft (u)[q(u) p(w)]duds =

and
p(t) _

<cc>0
a(t) vt
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