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Abstract 
 

Kaduna Polytechnic has no predictive model for student performances and 

administration. This paper considered two separate multivariate models; Multiple 

Regression and Linear Discriminant Models. Data was collected from Kaduna 

Polytechnic Records and classified into purposeful and logical categories for 

analysis. The SPSS package which has been ratified to enhance volume, speed and 

accuracy was used to derive the Fisher Linear Discriminant Model. The Generalized 

Multiple Regression Model was derived by solving normalized system of equations. 

Both models were used to predict the final CGPA of Kaduna Polytechnic students. It 

was discovered that the Multiple Regression has some significant prediction power 

while the Linear Discriminant model classified students’ into groups. Both the 

Multiple Regression and Linear Discriminant Models were necessary for 

comprehensive prediction of students’ grades. 

 

Keywords: Regression, Discriminant, Linear, Multiple, Rank Correlation, Tests of Hypothesis, 

SPSS, Models, ANOVA. 
 

1.0 Introduction 

In Kaduna polytechnic, examinations are conducted using the Semester System where students take a certain number of 

course units per semester. The results of these exams are graded according to the performance of the students as A, B, C, D, 

E and F and carry points of 5, 4, 3, 2, 1 and 0 respectively, and classified by Distinction, Upper credit, Lower credit, Pass 

and Fail.  These results are of paramount importance and we can use certain models to predict the final outcome or 

performance of the students in Kaduna polytechnic at any semester and particularly in the Department of Mathematics, 

Statistics and Computer Science. 

Two methods are studied and analyzed for this thesis. They are the Linear Discriminant Model (LDM) and the Multiple 

Regression Model (MRM). 

1. To use a Fisher’s Linear Discriminant Model capable of distinguishing and classifying good and average students. 

2. To use a Multiple Regression Model capable of predicting the final grades of students. 

3. To compare and contrast the powers of the discriminant model relative to the Multiple Regression Model.  

Regression analysis, usually termed regression, is used to draw the line of ‘best fit’ through coordinates                                                 

on a graph [1]. The techniques to be used will enable a mathematical equation of the straight line of the form y m x c   

which will  be deduced for a given set of coordinate values, the line being such that the sum of the deviations of the co-

ordinate values from the line is a minimum, i.e. it is the line of ‘best fit’. 

There are different mathematical models in Multiple Regression Analysis. The basic equation relating to the various 

variables may be written as: 

1 1 2 2 3 3
Y x x x E                                                          (2.0) 

Multiple Regression Analysis was used to derive a Mathematical relationship between the Cumulative Grade Point Average 

(CGPA) as the dependent variable (Y) and the results of the students as the independent variable xi and the associated error 

term E. then X1, X2 and X3 were used to denote relevant raw scores in Statistical Theory, Statistical Inference and Applied 

General Statistics respectively (in percentage). 

In this case, the least square method was used to obtain the estimates of the ’s written as b (Regression coefficient) while 

 is the constant value and the E is the error term. 
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The concept of Regression can be traced as far back as to 1889 which was a reported findings about the relationships 

between Heights of Fathers and Sons and discovered that tall Father always produced children that are tall while short 

fathers produced children that are also short. His works and findings apply in modern usage to a function that is employed 

in statistical prediction [2]. Similar findings were done on the proof and measurement of association between two things led 

to the idea of Rank Correlation and hence the developments of the Spearman’s Rank order correlation [3]. 

In the more general multiple regression model, there are k independent variables: 

0 1 1 2 2
...

i i i k ki i
Y x x x E        

 
The Normal equations are: 

1 1 1

, 1, 2, ...

1, 2, ...

k k k

ik ik k ik i

i k i

x x x Y i k

j k


  

 



  

 
For N=K=3 in this case we have: 

1 1 2 2 3 3 i
Y x x x e         

The parameter estimates 
1 2 3 1 2 3

ˆ ˆ ˆ, , , , , ,and of         was obtained through the use of Normal Equations and the 

computations of relevance vector estimates. 
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The solutions are more readily obtained using the matrix approach as: 
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Where: 

matrixDesign
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Then the model derived was of the form: 

1 1 2 2 3 3
ˆ ˆ ˆˆY x x x      

       (2.3)
 

Discriminant analysis treats the problems of attempting to differentiate between two or more classes of persons or object 

[4]. It is the most useful when we have obtained a set of measurement on population which we know are different groups. 

The major purpose of discriminant analysis is to predict membership into two or more mutually exclusive groups from a set 

of predictors, when there is no natural ordering on the groups [5] 

Typical application of discriminant analysis is testing for separation and equal means of two multivariate data sets, which 

assume multivariate normality and test assumes equal covariance [6]. 

The Linear Discriminant Model used is adopted from the independent works which he developed a method for the solution 

of the two group case known as Linear Discriminant Analysis and this is analogous to a multiple of regression analysis 

which the dependent variable Y, assumes only two values, each indicating membership in one of the other two groups [7]. 

It is similar to the methods of analysis developed by [8]. 

Similar studies produced similar results of Multiple Regression Analysis and the Linear Discriminant Analysis to support 

the relationship that leads to the prediction and forecasting to infer causal relationships between the independent and 

dependent variables [9, 10, 11]. 

Linear Discriminant Analysis (LDA) and Regression Analysis (RA) are widely used for multivariate statistical methods for 

analysis of data with categorical outcome variables. Both of them are appropriate for the development of linear 

classification models, i.e. models associated with linear boundaries between the groups [12]. 

Nevertheless, the two methods differ in their basic idea. While RA makes no assumptions on the distribution of the 

explanatory data, LDA has been developed for normally distributed explanatory variables. It is therefore reasonable to 

expect LDA to give better results in the case when the normality assumptions are fulfilled, but in all other situations RA 

should be more appropriate. The theoretical properties of RA and LDA are thoroughly dealt with in the literature; however 

the choice of the method is often more related to the field of statistics than to the actual condition of fulfilled assumptions. 

While RA is much more general and has a number of theoretical properties, LDA must be the better choice if we know the 

population is normally distributed. However, in practice, the assumptions are nearly always violated, and we have therefore 

tried to check the performance of both methods with simulations. This kind of research demands a careful control, so we 

have decided to study just a few chosen situations, trying to find a logic in the behaviour and then to think about the 

expansion onto more general cases. We have confined ourselves to compare only the predictive power of the methods.  

 

2.0 Methodology 

After getting the data, transform to tabulate it, certain software was used to enhanced volume, speed and accuracy. The data 

to be used will be in the form: 

Y X1 X2 X3 E 

     

     

     

     

     

Where: 

Y   = dependent variable 

Xi   = the independent variables 

E    = Error 

Let   

Y     =  Final CGPA 

X1 =  Raw scores (%) in Statistical Theory 

X2  =  Raw scores (%) in Statistical Inference 

X3  =  Raw scores (%) in Applied General Statistics  

Data was collected through the documentary method; (i.e. secondary source) data was collected directly from records of 

examination results from the examination office. 
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3.0 Analysis 

3.1 The Linear Discriminant Model 

This is adopted from the independence works of [5, 8]. 
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X x

n
   (the mean or average of x) 

The table was then split into two groups for the purpose of the discriminant analysis as follows: 
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The table will then be split into two groups for the purpose of the discriminant Analysis as follows:- 

 

Group 1: This group will consist of only students with lower credit and pass (Low performance group) 

Group 2: This group will consist of only students with distinction and upper credit (high performance 

students). 
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n   Number of observations in group 2 

21
X  = Mean scores in Statistical Theory for Group 2 

22
X  = Mean scores in Statistical Inference for Group 2 

23
X  = Mean scores in Applied General Statistics for Group 2 

Where:  

X1, X2, and X3 are courses taken in the first semester and Y is the Final CGPA at graduation. 
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S1 is variance/covariance matrix of sample of size n1 

S2 is variance/covariance matrix of sample of size n2 

S = Pooled variance - covariance matrix (since they are from the same population) 
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The Mahalanobis square distance is given by: 
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 and was used as the test statistic in the analysis. 

Decision Rule 

2
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Where: 

 
2

  = Population of exceptionally good students (upper and distinction) 

1
  = Population of low students (low and pass)  

 Regression models involve the following variables: 

(i) The unknown parameters denoted as ; this may be a scalar or a vector of length k.  

(ii) The independent variables, x 

(iii) The dependent variable, Y 

A regression model relates Y to a function of X and .   

Y   f(X, )  

The approximation is usually formalized as E(Y/X) = f(X,). To carry out regression analysis, the form of the 

function f must be specified. Sometimes the form of this function is based on knowledge about the relationship 

between Y and X that does not rely on the data. If no such knowledge is available, a flexible or convenient form 

for f is chosen. 

Now that the vector of unknown parameters  is of length k, (k=3), it means that N=k data points are observed, 

and the function f is linear, the equations Y=f(X,) can be solved exactly rather than approximately. This reduces 

to solving a set of N equations with N unknowns (the elements of ), which has a unique solution as long as the x 

are linearly independent. If f is non-linear, a solution may not exist, or many solutions may exist. 

In the process of analysis, data was classified into purposeful and logical categories or groups. The first group 

consisted of only students with lower credit and pass (i.e. low performance students) while the second group 

consisted of only students with distinction and upper credit (high performance students). The possible categories 

were considered when plans were made for collecting the data to facilitate analysis. Therefore, the process of 

analysis was partially concurrent with collection and presentation. Hence, there is the need to, first and foremost, 

present the data in their original form before extracting the desired analytical tables for the actual data analysis. 

This will actually reflect the originality of the data collected by the documentary method i.e. from examination 

results from the examination office.  
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Table 1: Kaduna Polytechnic Students Examination Records 

S/No 

Scores (%) in 

Statistical 

theory 

(X1) 

Scores (%) in 

Statistical 

inference 

(X2) 

Scores (%) in 

Applied general 

Statistics 

(X3) 

Final 

CGPA 

(Y) 

Remark 

 

Performance 

Group 

1 71 40 40 2.66 Lower credit Group 1 

2 50 40 40 2.47 Pass Group 1 

3 57 58 45 3.08 Upper credit Group 2 

4 50 50 40 2.51 Lower credit Group 1 

5 46 44 40 2.61 Lower credit Group 1 

6 50 45 53 2.58 Lower credit Group 1 

7 57 55 40 3.03 Upper credit Group 2 

8 70 86 75 3.72 Distinction Group 2 

9 50 53 55 3.04 Upper credit Group 2 

10 55 67 65 3.01 Upper credit Group 2 

11 43 42 40 2.58 Lower credit Group 1 

12 40 40 45 2.78 Lower credit Group 1 

13 61 42 40 2.52 Lower credit Group 1 

14 40 40 40 2.58 Lower credit Group 1 

15 40 45 40 2.55 Lower credit Group 1 

16 56 75 82 3.53 Distinction Group 2 

17 50 74 78 3.06 Upper credit Group 2 

18 63 45 56 2.79 Lower credit Group 1 

19 40 49 54 2.61 Lower credit Group 1 

20 55 54 40 2.99 Lower credit Group 1 

21 55 58 40 2.77 Lower credit Group 1 

22 60 78 68 3.42 Upper credit Group 2 

23 60 76 88 3.52 Distinction Group 2 

24 50 59 45 2.71 Lower credit Group 1 

25 71 85 76 3.89 Distinction Group 2 

26 50 59 55 2.66 Lower credit Group 1 

27 70 80 74 3.58 Distinction Group 2 

28 69 61 70 3.55 Distinction Group 2 

29 58 56 45 3.06 Upper credit Group 2 

30 71 85 78 3.73 Distinction Group 2 

Results of Regression Analysis 

  
Hence, the required regression model is as follows: 
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3i2i1ii
0.006X0.015X0.012X1.111Y ˆ

Coefficients a 

1.111 .174 6.368 .000 

.012 .004 2.995 .006 .633 1.581 

.015 .004 3.611 .001 .225 4.440 

.006 .004 1.688 .103 .262 3.817 

(Constant) 
Scores (%) in Statistical 
theory (X1) 
Scores (%) in Statistical 
inference (X2) 
Scores (%) in Applied 
general Statistics (X3) 

B Std. Error 

Unstandardized 
Coefficients 

t Sig. Tolerance VIF 

Collinearity 
Statistics 

Dependent Variable: Final CGPA (Y) a.  

Table 2: SPSS Output Regression Analysis 
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From all the p-values in Table 2 above, all the coefficients are relevant to the model. 

 
From Table 3, Since R is large; this confirms the suitability as well as the goodness of fit of the regression model 

obtained. 

 

3.3 Collinearity Diagnostics 

 
Eigen Values and Condition Index Multi-Collinearity Test 

As particularly used for this study, from the eigenvalues of the matrix, we can respectively derive what is 

known as the condition number  and condition index  as follows: 

 

 and   

If K is between 100 and 100, there is a moderate to strong multicollinearity and if it exceeds 1000, there is severe 

multicollinearity. Alternatively, if the KCI   is between 10 and 30 there is moderate to strong multicollinearity 

and if it exceeds 30, there is severe multicollinearity. Some statisticians believe that the condition index KCI 

is the best available multicollinearity diagnostics for all kinds of regression models. 

From Table 4 above, since the entire condition index values are less than 30, there is no evidence of severe 

multicollinearity among the explanatory variables used for the model. 
 

3.4 Spearman’s Rank Correlation 
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Model Summary b

.933a .870 .855 .16557 2.609

R R Square

Adjusted

R Square

Std. Error of

the Estimate

Durbin-

Watson

Predictors: (Cons tant), Scores (%) in Applied general Statistics  (X3),

Scores  (%) in Statistical theory (X1), Scores (%) in Statistical inference

(X2)

a. 

Dependent Variable: Final CGPA (Y)b. 

Collinearity Diagnostics a

3.927 1.000 .00 .00 .00 .00

.050 8.890 .24 .04 .04 .13

.014 16.512 .68 .70 .03 .16

.009 21.337 .07 .26 .92 .71

1

2

3

4

Eigenvalue

Condition

Index (Constant)

Scores (%)

in Statistical

theory (X1)

Scores (%)

in Statistical

inference

(X2)

Scores (%)

in Applied

general

Statistics

(X3)

Variance Proportions

Dependent Variable: Final CGPA (Y)a. 

)'( XX

K KCI 

eigenvalueimum

eigenvalueimum
K

min

max


eigenvalueimum

eigenvalueimum
KCI

min

max


Correlations Matrix

1 .606** .514** .713**

.606** 1 .859** .901**

.514** .859** 1 .833**

.713** .901** .833** 1

Scores  (%) in Statistical

theory (X1)

Scores  (%) in Statistical

inference (X2)
Scores  (%) in Applied

general Statistics  (X3)
Final CGPA (Y)

Correlations

Scores  (%)

in Statis tical

theory (X1)

Scores  (%)

in Statis tical

inference

(X2)

Scores  (%)

in Applied

general

Statistics

(X3)

Final

CGPA (Y)

Correlation is  s ignificant at the 0.01 level (2-tailed).**. 

Table 3: The Regression Model Summary 

Table 4: The Regression Collinearity Diagnostics. 

 

Table 5: The Regression Correlation Matrix 
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From Table 5 above, the pairwise correlations are all positive and strong indicating that each of the three selected 

courses is positively and strongly contributing to the students’ CGPA. 

 
From Table 6 above, the pairwise correlations in table 5 are all significant indicating that each of the three selected 

courses is significantly contributing to the students’ CGPA. 

The Regression Models 

From Table 1
 
above, the matrix of original exam scores that was used to obtain the regression coefficients and 

thereafter the models for predicting students’ final CGPA is as follows: 
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Table 6 : The Spearman’s Correlation Coefficients. 
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The summary of the computations were obtained through the SPSS tables; thus 

 

 
 

Therefore, the required regression model is as follows: 

 
3.5 Predicting Students’ CGPA Using the Regression Model  

Consider our regression model as given below: 

 
It is pertinent to use the regression model to predict the CGPA of students using the regression model and the 

following table containing the scores of ten students as follows: 

 

 

 

 

 

 

 

 

 

 
Table 7:  The Scores of Ten Students 

S/No Statistical 

Theory 

(X1) % 

Statistical 

Inference 

(X2) % 

Applied General 

Statistics 

(X3) % 

Final 

CGPA 

Actual 

Grade 

Predicted 

CGPA 

Predicted 

Grade 

1 50 65 55 2.98 LC 3.02 UC 

2 50 49 45 2.59 LC 2.72 LC 

3 46 40 40 2.52 LC 2.52 LC 

4 50 53 55 3.04 UC 2.84 LC 

5 47 45 45 2.41 PASS 2.62 LC 

6 42 49 40 2.73 LC 2.59 LC 

7 55 67 65 3.01 UC 3.17 UC 

8 56 75 82 3.53 DIST 3.40 UC 

9 40 40 40 2.50 LC 2.43 PASS 

10 50 74 78 3.06 UC 3.29 UC 

 The mean absolute deviation MAD for the actual and predicted CGPA is obtained as follows; 

  
Similarly, the coefficient of mean absolute deviation MAD for the actual and predicted CGPA is obtained as 

follows; 
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 3.6 The (Fishers’) Linear Discriminant Model 

Group 1 

The mean vector and dispersion matrix for group 1 are as follows: 

                     

                   
Group 2 

The mean vector and dispersion matrix for group 2 are as follows: 

 

 

 

 

The pooled variance-covariance matrix is as follows: 

 

 
The Mahalanobis square distance is computed as follows: 

 

 

 

  
The Fishers linear discriminant model is computed as follows:  
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Finally we obtain the following linear discriminant model: 

 
The classification rule that was adopted is as follows: 

Classify as Group 2 if  

Classify as Group 1 if  

3.7 Classifying Students’ CGPA Using the Discriminant Model  

            It is pertinent to use the discriminant model to classify the CGPA of students. Using 

             the discriminant model: 

 

And the classification rule is as follows: 

Classify as Group 2 if  

Classify as Group 1 if  

               To compute estimates or forecasts, consider the discriminant model as given below: 

   
              That will be used to predict the final grades of students. 
             Using the discriminant model and the following table containing the scores of ten students as  

             follows: 

                Classified as group 2 

                 Classified as group 1 

                 Classified as group 1 

                 Classified as group 1 

                 Classified as group 1 

                 Classified as group 1 

                 Classified as group 2 

                  Classified as group 2 

                  Classified as group 1 

                  Classified as group 
 

                Table 8:  Table for final CGPA 
S/No Statistical 

Theory 

(X1) % 

Statistical 

Inference 

(X2) % 

Applied General 

Statistics 

(X3) % 

Final 

CGPA 

Actual 

Group 

Predicted 

Group 

1 50 65 55 2.98 1 2 

2 50 49 45 2.59 1 1 

3 46 40 40 2.52 1 1 

4 50 53 55 3.04 2 1 

5 47 45 45 2.41 1 1 

6 42 49 40 2.73 1 1 

7 55 67 65 3.01 2 2 

8 56 75 82 3.53 2 2 

9 40 40 40 2.50 1 1 

10 50 74 78 3.06 2 2 
 

            Hence, the probabilities of misclassifications are obtained as follows: 
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4.0 Discussion and Conclusion 

4.1 Discussion  
This work has achieved three main objectives among others.  
1. A linear discriminant model capable of distinguishing and classifying students with good and average (mediocre) grades were objectively 

built. 

2. A multiple linear regression model capable of predicting the final grades of  students via their GPAs was also built. 

3. The prediction powers of the discriminant model and that of the regression     
            model were empirically compared. 

The data collected and used for the study were initially displayed on a summary table for easy access and to facilitate analysis. Hence, the data 

analysis was conducted in an objective and factual manner using the summary table. Therefore, the multiple linear regression model built was: 

 
Moreover, this model has satisfied all the validation and diagnostic tests of goodness of fit, autocorrelation, homoscedasticity and 

multicollinearity. Consequently, the model was used to predict the CGPA and by extension the final grades of ten students.  

Similarly, the Fisher’s linear discriminant model built herein was:  

  

with a dichotomized classification threshold of  which forms the decision criteria for the model. This model was also used to predict 

and classify the final grades of ten students. 
 

4.2     Conclusion 
Objectively, this paper has applied all the laid down procedures to collect, analyze and interpret educational data for the purpose of evaluating students’ 

performance. The outcome of the analysis has produced two separate mathematical models each capable of independently predicting accurate students’ 
performance through their grades. 

First, the multiple linear regression with three predictor variables has a coefficient of determination of or simply 87.0%. This implies that the 

three predictor variables included in the model can explain at least 87.0% of the changes in the CGPA of students which is good enough for the model. 
 

Secondly, on the other hand, the Fisher’s linear discriminant model also has the same three predictor variables with a probability of misclassification from 

group 1 into group 2 of 0.1and vice versa the probability of misclassification from group 2 into group 1 is also 0.1. Hence, the combined misclassification 
(error) probability is therefore (0.1)(0.1)=0.01. That is, the linear discriminant model has a 0.99 classification power; in other words, it has a 99% 

prediction power into either of the two categories of students – those with good grades or average (mediocre) grades. 

Conclusively, the Fisher’s linear discriminant model should be preferred and used for direct classification into group membership (good or mediocre 
grades) as it has a higher precision in that regards. On the other hand, there is no direct alternative to multiple regression when the actual CGPAs of the 

students are desired. Hence, each of the models has a peculiar advantage over the other. Both the linear discriminant and multiple regression models could 

be used together for effective results. 

 

4.3  Recommendations 

In view of the applicability of these findings, the following are therefore recommended: 

1. The management of Kaduna Polytechnic and by extension other tertiary institutions of learning should utilize these models for predicting 

their students’ grades to enhance educational planning. 
2. Guidance and counseling practitioners should also utilize these models for counseling, evaluation and placement of students. 

3. For the predictions of CGPAs only, the multiple regression model with some good predictor variables should always be preferred and 

used in this kind of situation. 
4. For the classification of students’ groups (good or mediocre grades) only, the linear discriminant model be preferred and used in this kind 

of situation. 

5. Both the multiple regression and linear discriminant models should be used together when a more comprehensive predictions of students’ 
grades is required. 
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