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Abstract 
 

The present paper divulges combined effects of radiation, perturbations, oblateness 

and disc on motion around collinear Lagrangian points of the restricted three-body 

problem when the three bodies are oblate spheroids and surrounded by a disc of dust. 

The primaries are assumed to be emitting radiation pressure and small perturbations 

in the Coriolis and centrifugal forces are also assumed to be present. These 

perturbing forces now act on motion and locations of the infinitesimal mass and the 

pertinent equations of motion are deduced. The collinear Lagrangian points are also 

located. It is seen that there exist five such Lagrangian points, two of which exist 

when simultaneously the mass parameter and the density profile 

parameter T of the disc is less than 2 . Invariably, such additional collinear points 

may not exist in our Solar system. The presence of the perturbed forces due to 

radiation, oblateness and small perturbation in the centrifugal force do not in any 

way result in the existence of additional points but define the locations. The stability 

is discussed and it is seen that the collinear Lagrangian points are unstable. Hence, 

the presence of the disc in the configuration may not possess the required force 

sufficient to keep the infinitesimal mass from departing the collinear Lagrangian 

points.  
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1. Introduction 

Scientists for all time have been engaged in research to produce knowledge and discover results that will be applicable and 

useful for man. The purpose of research is also about testing theories often generated by pure science and applying them to 

real situations. While pure mathematics has to do with abstract principles and describing them with theories, applied 

mathematics by contrast use equations to investigate real life phenomena like mechanics, gravity and several other 

scientific fields. A branch of theoretical astronomy that deals with the motion of celestial bodies, is called celestial 

mechanics. Of great importance and interest in celestial mechanics, is the restricted three-body problem (R3BP). This 

problem illustrates motion of a third body having infinitesimal mass and moving under the mutual gravitational attraction 

of two main bodies called primaries which move around their center of mass either along circular or elliptical orbits. The 

R3BP plays an important role in studying the motion of artificial satellites and also used to evaluate the motion of the 

planets, minor planets and comets. The restricted problem gives an accurate illustration not only regarding the motion of the 

Moon but also with respect to the motion of other natural satellites. Furthermore, the restricted problem has many 

applications in physics, mathematics and quantum mechanics, to name a few. In quantum mechanics, a general form of the 

restricted problem is formed to solve the Schrödinger equation of helium-like ions. Furthermore, in modern solid state 

physics, the restricted problem can be used to discuss the motion of an infinitesimal mass affected not only by the  
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gravitational field but also by light pressure from one (or both) of the primaries. The R3BP is still a stimulating and active 

research field that has been receiving considerable attention of scientists and astronomers because of its numerous 

applications. 

The solutions of the R3BP have been developed over the centuries; from [1-8]. There exist five specific solutions called the 

equilibrium or Lagrangian points. Three of these points denoted
1

L ,
2

L and 
3

L  are called the collinear equilibrium points and 

are found on the line joining the primaries while the other two denoted 
4

L and 
5

L are called triangular equilibrium points 

because they form a pair of triangles with the primaries.. The collinear equilibrium points are unstable points while the 

triangular points can be stable [2, 4,8], in that a slight displacement of the infinitesimal mass away from the equilibrium 

points will not produce unbounded motion but rather an oscillation about the points. 

Several modifications of the R3BP have been introduced in order to make it more relevant and applicable to certain systems 

of Dynamical Astronomy. The characterizations under different permutations have included perturbing forces such as mass 

variations of the primaries [5,6] radiation pressure and P-R drag of the primaries [9], shapes of the three bodies [8], debris 

or dust disc around the primaries [7, 10], to whether the bodies are charged masses or magnetic dipoles [11]. In [4] the 

combined effects of radiation, perturbations and oblateness on locations and stability of the equilibrium points, was 

discussed. In their study, they assumed that both main masses are radiating bodies and have the shape of an oblate spheroid. 

Two triangular and three collinear equilibrium points were found and their stability examined. An extension of the 

formulation in [4] was carried out by [8] by assuming that the infinitesimal mass has the shape of an oblate spheroid, 

consequently turning the model into the restricted problem of three oblate bodies. They also found two triangular and three 

collinear points.  

  In this paper, we extend the work of [8] by assuming that the main masses are stars surrounded by a disc of dusts. 

However, we consider motion only around the collinear equilibrium points. The equilibrium points are very important in 

exploration and development of space. The Solar and Heliospheric Observatory (SOHO) lunched in 1995 and Microwave 

Anisotropy Probe (MAP) lunched in 2001 by NASA are currently in operation Sun-Earth 
1

L and
2

L , respectively. Solar 

TErrestrial RElations Observatory-Ahead (STEREO-A) made its closest pass to
5

L  recently, on its orbit around the Sun. 

Asteroid 2010 SO16, is currently proximal to 
5

L  but at a high inclination. 

The paper is set up with the introduction given in section 1 while the equations of motion and location of the collinear 

equilibrium points are presented in sections 2 and 3, respectively. The linear stability analysis of the collinear equilibrium 

points is done in section 4 while in section 5 and 6, the discussion and conclusions are drawn, respectively.  
 

2. Equations of motion 

Let 
1

m and
2

m  be the masses of the first and second primary, respectively, and let 
3

m  be the mass of the third body having 

infinitesimal mass compared to the masses of the primaries. Suppose that the primaries have the shape of an oblate spheroid 

and are radiation sources such that they emit radiation pressure. Then, the equations of motion in a barycentric rotating 

coordinate system of an infinitesimal mass in the gravitational field of the primaries, with effective small perturbations in 

the Coriolis and centrifugal forces, have the form [4]: 

2
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2
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1
r and

2
r are the distances of the body from the first and second primary, respectively;

                                                                                   

                                                                    

21

2

mm

m




is the mass ratio of the primaries and n  is their mean motion defined by the oblateness of the primaries  2,1iA
i

. 

The parameters  and  represent the small perturbations in Coriolis and the centrifugal forces, respectively and are such 

that  1 1   and  1 1   . 
 

Journal of the Nigerian Association of Mathematical Physics Volume 61, (July – September 2021 Issue), 71 – 76 

http://www.answers.com/topic/unbounded
http://www.answers.com/topic/oscillation


73 

 

On Combined Effects of Radiation…                            Oni and Joel               J. of NAMP [ 

 

 

 2,1iq
i

 denote the radiation pressure of the first and second primary, respectively, and are  determined by the value of a 

resultant force F due to the gravitational force 
g

F  and the radiation pressure force 
p

F  acting on infinitesimal mass.  

Next, in accordance with [9]; when the shape of the infinitesimal mass is as well assumed to be in the shape of an oblate 

spheroid, the equations of motion (1) take the form: 
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where 
3

A denotes the oblateness of the infinitesimal mass. 

Now, working with the modeled equations (2), it is assumed that the configuration has a disc of dusts surrounding it and the 

extended problem has equations of the type [12]: 
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The mean motion in this case is 
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Where 
c

r  is the radial distance of the particle in the classical R3BP while is the mass of the disc and baT 

determines the density profile of the disc. Here, a  and b are the flatness and core parameters, respectively.  The 

gravitational potential acting on the infinitesimal mass is [13]: 
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 where G  is the gravitational constant;

 

22
yxr  is the radial distance of the particle;  

 

3. Collinear equilibrium points 

The collinear equilibrium points are the equilibrium points which lie on the line joining the primaries. They are the 

solutions of the R3BP when the velocity and acceleration are zero.  Consequently, we have to equate the R.H.S of equations 

(4) to zero and solve. That is, we have to solve the equations 
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when 0y .. 

For zero velocity and acceleration components in the equations of motion (4) when 0y  , we have  
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where  
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For zero velocity and acceleration components in the equations of motion (4) when 0y  , we obtain equation (7) and 

suppose we denote it by  f x , so that  
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where
1

r x   and 
2

1r x     

The abscissas of the collinear points are the roots of equation (8). 

  Now, from equation (8), if x   , we have   2
df x

n
dx
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dx
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 0 0f  , while for 1x   ,  1 0f    . Therefore, the real roots of the equation (8) will lie in the opens interval

 2, 1   ,  1, 0  and  , 1   . These roots correspond to the collinear points and we shall denote them appropriately 

when they are found. 

Now, we express equation (8) as 
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Next, observe that the first equation in system (10) can have different forms depending on positions of the primaries. Hence, in order to 

investigate the position of collinear equilibrium points, we divide the orbital plane Oxy into three parts with respect to the primaries:

1x   , 1 x    and x  . The first case 1x   , implies that 1 0x     and if this happens, then 0x   . In the second 

case, when 1 x    , we have 0x    and 1 0x    . The third case when x  , we have 0x   and so 1 0x    . 

We follow the pattern used in [10] and we found that an equilibrium point
1

L exists in the interval  ,  1  while a second point 
2

L lies 

in the interval  1,  0  . When 2T  , the third and fourth equilibrium points denoted by
21

L and
22

L exist in the open interval

 0,   , each lying in the interval
0,  

2

T 
 
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 and
,  

2

T


 
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, respectively. A fifth collinear equilibrium point denoted 
3

L  lies in 

the open interval  ,    . Hence, there exist five collinear equilibrium points when there is a disc around the system.  

Following [10], we explore equation (7) numerically and our result reveals that when the mass parameter for any 

system, there exist only three collinear equilibrium points. When simultaneously and , only then do the 

additional collinear equilibrium points and exists, provided 2T  . Invariably, such equilibrium points may not exist in our 

Solar system. The presence of the perturbed forces coming from radiation, oblateness, small perturbation in the centrifugal force do not 

result in the existence of additional collinear points but they affect the locations. These additional collinear points now referred to as the 

Jiang and Yeh points [14] do not appear in the classical R3BP because the effects arising due to the gravitational potential from the disc 

is not present. 
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4 Stability of collinear equilibrium points 

In order to study the stability of any of the equilibrium points  3,2,11 
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small displacement and substitute it in the equations of motion (4). On expanding the equations of motion into first-order 

terms with respect to   and  , we obtain the variational equations:             
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where the superscript O indicates that the derivatives are to be calculated at the collinear equilibrium points. 
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Equations (13) and (14) are the second order partial derivatives estimated at the collinear point
0

x . 

Inspecting the reduced characteristic equation when (14) is substituted in (12), we see that 
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Hence, the roots of (12) contain at least a positive root in accordance with Descartes rule and this root induces instability at 

the collinear equilibrium points. Hence, the collinear points are linearly unstable.  
 

5. Discussion  

The equations of motion of an infinitesimal body has been derived under the assumption that the three bodies involved in 

the model of the R3BP are surrounded by a disc and all have the shape of an oblate spheroid with further assumptions that 

both primaries are radiating and small perturbation in the Coriolis and centrifugal forces are considered to be effective. 

These equations are affected by radiation pressure, oblateness, mass of the disc and the perturbations in the Coriolis and 

centrifugal forces of the primaries. These equations are similar but contain more parameters than other previous studies of 

[4,7,8,10,15,16,17]. Therefore, the five collinear obtained only have their positions shifted due to the combine effects of 

these parameters in the governing equations. However, it is important to state that the additional two collinear equilibrium 

points which have been mentioned in the works of [7,15,16,17], which exist when density profile parameter T is less that

2 only holds in specific range of the mass parameter. Our numerical effort reveals that when the mass parameter

, 2T  , there exist only three collinear points, but when simultaneously and 2T  , two 

additional collinear equilibrium points and exists. These additional collinear points do not appear in the classical 

R3BP because the effects arising due to the gravitational potential from the disc is ignored. The study of the stability of the 

collinear equilibrium points did not yield anything different from the already established fact that the collinear equilibrium 

points are unstable.  

 

6. Conclusion 

This paper divulges the dynamical behavior of motion of an infinitesimal mass around collinear equilibrium points in the 

R3BP under the influence of small perturbations in the Coriolis and centrifugal forces, radiation pressure and oblateness of 

the primaries which are both enclosed by a disc. The infinitesimal mass is also assumed to have the shape of an oblate 

spheroid. The equations of motion have been presented and the collinear equilibrium points reassessed. There are five 

collinear equilibrium points, three are the usual classical locations while two points exist particularly when simultaneously 
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and 2T  . The presence of the perturbed forces due to radiation of the primaries, oblateness of the three 

bodies in the set up and small perturbations do not in any way result in the existence of additional collinear points but they 

affect the positions of these points. These points are all unstable due to the presence of a positive root of the governing 

characteristic equation. Thus, the presence of the disc in the configuration may not hold bound the infinitesimal mass in 

orbit around the collinear points.  
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