
55 
 

Journal of the Nigerian Association of Mathematical Physics 

Volume 61 (July – September 2021 Issue), pp55 – 62 

© J. of NAMP 

COMPARATIVE STUDY OF THE PREDICTION OF HMF2 USING THREE DIFFERENT 

IONOSPHERIC MODELS AT AN EQUATORIAL WEST AFRICAN STATION 

 
E J. Oluwadare1, A. O. Oluwadare2, O.E Abe3, O. O. Odeyemi4, J. O. Adeniyi5 and E. O. Oyeyemi4  

 
1Department of Physics, Ajayi Crowther University Oyo, Oyo-State, Nigeria 

2Department of Physics, Elizade University Ilara-Mokin, Ondo-State, Nigeria 
3Department of Physics, Federal University Oye-Ekiti, Ekiti-State, Nigeria 

4Department of Physics, University of Lagos, Lagos-State, Nigeria 
5Department of Physics, Landmark University Omuaran, Kwara State, Nigeria 

 

Abstract 
 

A good algorithm capable of modelling the ionospheric behaviour accurately is 

important for a critical space-based application within the Equatorial Ionization 

Anomaly (EIA) region. In this study, diurnal monthly mean values of the peak height 

of ionosphere electron density at F2-layer (hmF2) were derived from the ionosonde 

measurements at Ouagadougou Burkina Faso with geographic latitude 12.4°N, 

longitude 1.5°W and magnetic dip 1.43°N. The study period covered three solar 

cycles with different geophysical seasons and condition, it spans through the years 

1968 to 1997. Ouagadougou is a station located within the equatorial ionization 

anomaly (EIA) region of the West African sector. Similarly, the diurnal monthly 

average of hmF2 was predicted using, empirical models, Artificial Neural Network 

(ANN) algorithm, NeQuick version 2.0.2 algorithm and the International Reference 

Ionosphere version 2016 (IRI-2016) algorithm for a period spanning 20 years. In 

addition, 20 years of solar-geomagnetic data such as solar flux (F10.7), Planetary 

“A” (Ap) index, plasma wind speed (Vx), plasma wind temperature, interplanetary 

magnetic field (IMF-Bz) and Disturbed storm time (Dst) with the local time and the 

day number were used as input variables in the ANN algorithm. The monthly average 

of sunspot number and solar flux (F10.7) was used as input variables of IRI-2016 

and NeQuick2 algorithms respectively. A comprehensive comparative analysis that 

gives a better agreement with the trend of hmF2 observed was performed on all three 

models. The results have shown that at equatorial region, ANN produces the highest 

correlation coefficient (R) of 0.95 with the least residual error mean and standard 

deviation of (11.67±11.88) km, followed by NeQuick version 2.0.2 having R to be 

0.87, residual error with the standard deviation to be 35.63±25.34 km and IRI-2016 

has the least correlation coefficient of 0.84 and the most residual error with the 

standard deviation of (42.76±29.76) km. With the comparative analysis, the study has 

revealed that ANN could predict accurate and reliable hmF2 that compare well with 

the actual experimental geophysical conditions.  
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1. Introduction  

A comprehensive study of the ionospheric profile is required to ensure the effective planning, operating, and management 

of Global Navigation Satellite Systems (GNSS) applications. The system’s signals are highly affected by the randomness in 

the variations of the charged particles (particularly free electrons) density along its path. The density of electron in the 

ionosphere varies rapidly across the globe due to the non-consistence in the production of the basic important ions (O+, N+,  
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NO+, O2
+ and N2

+) and electrons by the photo-ionization processes together with their recombination effect to neutral atoms 

[1-5]. Many researchers have reported that the level of randomness of the electron density in the ionosphere mainly depends 

on the geographical and geomagnetic coordinates, local time, season, neutral winds and the rapid changes in the solar 

activity (as measured by F10.7 (solar flux) or sunspot number (SSN)) and magnetic property (measured by the solar wind) 

of the sun [6-9]. The randomness in the variability in the maximum height of electron density at F-layer (hmF2) is more 

critical at Equatorial Ionization Anomaly (EIA) region where the plasma instability mechanism generates post-sunset 

plasma bubbles and electron density depletion because the daytime ionization distribution is modified through the fountain 

effect and develops a crest at around± 15𝑜 𝑡𝑜 ± 20𝑜 magnetic equator and a trough at the magnetic equator during towards 

the late local noon. The variation of the solar radiation and solar zenith angle could result in the temporal and spatial 

variations of hmF2 [10]. They further reported that hmF2 could range from 350 to 500 km at the equatorial latitudinal 

regions and 250 to 350 km at the middle latitudes regions depending on the solar activity, local time, season, electric fields 

and neutral winds.  

This hmF2 parameter is one of the essential ionosphere parameters uses in characterizing the ionosphere over a given 

region. It is also a key parameter for radio Physics to evaluate ionosphere plasma drift at any point in time. Extensive 

studies in both theoretical and experimental have been done to understand the active component involves in the evolution of 

the variability of the ionosphere height. Many regional or global models in empirical, Physics-based or semi-empirical have 

been developed [5,10-15] to cater for the prediction of the ionosphere electron density height; some of them do better in a 

quiet geophysical environment like middle latitudes, but either over-estimate or under-estimate at low latitudes. In line with 

this, International Reference Ionosphere (IRI) is an international project that was set up in the year 1968, sponsored by the 

Committee on Space Research (COSPAR) and the International Union of Radio Science (URSI), to understand the 

ionosphere density profile at a given location on the globe [16]. IRI-model has undergone series of versions for 

optimization in order to cater for the global ionosphere profiling [17-22]. The IRI model was entirely lacking in strength to 

capture the topside F-layer. The sum of Epstein layers in representing the analytical profiler model (NeQuick model) have 

been used to reproduce the electron density distribution within the ionosphere [23]. This model was further optimized to 

cater for the topside F2 region [24-27]. The version of NeQuick model (NeQuick 2) is essentially driven by solar flux 

F10.7, a special version that has been used in the ionosphere correction algorithm segment of Galileo. International 

Telecommunication Union-Radio (ITU-R) has adopted NeQuick as a procedure for TEC estimation [25]. The extent to 

which the NeQuick 2 model allows the creation of a realistic and controlled ionosphere can be found in [28]. However, the 

hmF2 being estimated by the NeQuick 2 model still have some shortfall in low latitudes anomaly regions. 

Therefore, the ability to model ionosphere height correctly is of great importance in the planning, implementation and 

operation of ionosphere delay correction algorithm for any global-regional satellite-based navigation and communication 

systems (GNSS-SBAS, Global Navigation Satellite System-Satellite Based Navigation System), particularly over the low 

latitudes regions. This study focuses on the methodology of Artificial Neural Network (ANN) to predict hmF2 at a point 

within the trough of EIA and compare the output with the IRI-2016 an empirical model and NeQuick version 2.0.2, a 

profiler. In many cases, ANN has been used to predict the ionospheric parameters. A global model with high forecasting 

capability of F2-layer (foF2) based on neural network has been developed [29]. Neural network has been used to predict the 

level of ionospheric scintillation over Brazil [30].  Likewise, ANN based-model has been used to predict NmF2 and hmF2 

over Indian [31]. ANN output was found to have a better representation of the parameters along the longitudes of their 

study locations compared with IRI-2016. 
 

2. hmF2 modelling processes and Neural Networks methodology 

To model hmF2 with the neural network, a ground-based ionosonde data of critical frequencies at E-layer (foE), F2-layer 

(foF2) and maximum usable frequency at 3000 Km after reflection (M(3000)) obtained from a station within the trough of 

EIA in African sector, located at Ouagadougou Burkina Faso, for 20 years was used. The years used spanned from 1969 to 

1996, solar cycles 20-22. The vertical ionospheric profile data obtained in MHz were used to compute hmF2 following the 

algorithm proposed by [31] given in Eq.(1).  

ℎ𝑚𝐹2 =
1490𝑀𝐹

𝑀 + ∆𝑀
− 176                                                                                    (1) 

where 𝑀𝐹 = 𝑀√
0.0196𝑀2+1

1.296𝑀2−1
,M is M(3000)/foF2=(M(3000)F2)  

and ∆𝑀 =
0.253

𝑓𝑜𝐹2 𝑓𝑜𝐸−1.215⁄
− 0.012

 
A popular technique used by independent researchers to optimize the NeQuick model in the estimation of hmF2 is called 

Dudeney’s technique conducted by [27]. In the same way, [10] followed Dudeney methodology to estimate hmF2. This 

technique has also been used in this study. 
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The artificial neural intelligent network is a special algorithm that fits a set of numeric inputs data during the training 

process to a set of numeric target. Knowing fully that ionosphere is influence mainly by the solar-geomagnetic conditions 

and the geophysical dynamism. In this research, the input parameters include the solar-geomagnetic data (solar flux 

(F10.7), Planetary A-index, plasma wind speed (Vx), plasma wind temperature, interplanetary magnetic field (IMF, Bz) and 

Disturbed storm time (Dst)), the local time and the day number. While the target parameter is the estimated hmF2. The 

solar-geomagnetic data sets were obtained from the National Aeronautics and Space Administration (NASA) Space Physics 

Data Facility (http://omniweb.gsfc.nasa.gov/) and the output data set is the estimated hmF2 as described in Eq. 1. The 

modelling process is randomly divided into training segment; validation segment and test case segment. 70% of the data 

used was allotted to the training segment, 15% was used for validation and the remaining 15% of the data was used for a 

test case. The inputs data were arranged as 𝑥1, 𝑥2, 𝑥3 … 𝑥𝑛, and the corresponding weights for the inputs 𝑤1, 𝑤2, 𝑤3 … 𝑤𝑛 as 

shown in the schematic diagram (Fig 1). Though the weight ratio is part of the hidden processes of the network. The 

weights are assigning to the input parameters during the training process using different algorithms. The neural networks 

would learn by adjusting the weights connecting different summation of the weights is multiplied by the inputs as shown in 

the schematic diagram (Fig 1). In addition, the artificial neural network has different layers; the output of the first layer is 

set to the input of the second layer. During the training process, the network is adjusted according to its error and the output 

is compared with the target hmF2 until the predicted values are stabilized. The validation performance at each epoch is 

evaluated from the connection through to output-size using the root mean square error and regression analysis. Details of 

the neural network algorithms hidden processes are described in [32,33]. The hmF2 outputs from the neural network are 

compared with the hmF2 estimated from the experimental data and the hmF2 obtained from NeQuick version 2.0.2 and 

IRI-2016 models. 

 
Figure 1: Schematic processes of neural network 
 

3. Results and Discussion 

3.1 The regression analysis of the models 

Figure 2 presents the result of the regression analysis between the hmF2 predicted using the artificial neural network and 

the hmF2 estimated with the experimental data for the trained, validation and the tested case scenarios. The values of the 

coefficient of correlation (R) during the training (R= 0.96), validation (R= 0.95) and test case (R=0.95) have shown that all 

the input parameters in the artificial neural network have a great impact in influencing the evolution of the ionosphere and 

its height. The result of the regression with the high value of R is an indication that the hmF2 predicted by ANN is strongly 

interrelated with the experimental data. On the other hand, Figure 3 shows the regression analysis of the ANN, NeQuick2 

and IRI-2016 models together with their residual errors. This Figure describes the interrelationship between the hmF2 

models' outputs and the observed. In the sense that the hmF2 predicted by ANN gave a better agreement with the hmF2 

observed with correlation (R) of 0.95 and RMSE of 15.85 km followed by NeQuick version 2.0.2 (R=0.87 and 

RMSE=29.52 km) and IRI-2016 (R=0.84 and RMSE=34.63 km) algorithms. Figure 3 right lower panel illustrates the 

distribution of the residual error for ANN, NeQuick2 and IRI-2016 models for the 20 years of data used. ANN gives the 

least mean and the least standard deviation of the residual error(11.67 ± 11.87) 𝑘𝑚, including 75 and 99 percentiles 

of(34.77 𝑎𝑛𝑑 59.07) 𝑘𝑚 respectively. While NeQuick version 2.0.2, which produces the mean and standard deviation of 

(35.87 ± 24.47) 𝑘𝑚 75 and 99 percentiles (81.45 𝑎𝑛𝑑 102.41)𝑘𝑚 respectively. The highest residual error among the 

models evaluated is obtained in IRI-2016 with the mean and standard deviation of (42.80 ± 29.59) 𝑘𝑚, 75 and 99 

percentiles (97.39 𝑎𝑛𝑑 125.98) 𝑘𝑚 respectively. Looking at the statistical computation of the regression and the error 

distribution of the models used, at each instance, the values of the prediction residual error for the mean, standard deviation, 

75 percentile, 99 percentile and the RMSE of the ANN remains lower compared with NeQuick 2 and IRI-2016 outputs. 

This is an indication that ANN could provide an accurate and reliable hmF2 that compare well with the actual experimental 

values more than NeQuick 2.0.2 and IRI-2016. 
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Figure 2: Correlation analysis of the predicted hmF2 and estimated hmF2 for the trained, validation and tested values 

obtained at Ouagadougou, Burkina Faso. 

 
Figure 3: Correlation Analysis of the observed and the predicted hmF2 at Ouagadougou, Burkina Faso: left upper panel 

(ANN); right upper panel (NeQuick 2); left lower panel (IRI-2016); and right lower panel (Residual Error of the models).  
 

3.2 Influence of Solar Activity on the models  

Figure 4a illustrates the comparative analysis of the climatologically monthly mean values for the predicted hmF2 and the 

observed during the selected solar minimum years of 1976, 1986 and 1996. The selected years correspond to the solar 

cycles 20, 21 and 22 with a yearly average of sunspot number18.34 ± 18.12, 14.74 ± 17.01 and11.88 ± 18.42 

respectively. For clarity, Figure 4b expresses the monthly evolution of the residual error for the selected years. The outputs 

of the models all follow the same evolutional trend with the observed hmF2 throughout the year. However, ANN outputs 

always align with the observed more than NeQuick 2.0.2 and IRI-2016 as clearly observed in Figure 3b, but NeQuick 2.0.2 

and IRI-2016 output produce little deviation with some overestimation. The details of the distribution of the residual errors 

of the models that illustrate the level of deviation from the observed hmF2 during the minimum years of the cycles 

considered are presented in the Figure 5. At the minimum solar activity of the solar cycle 20 (1976), average sunspot 

number of 11.88, ANN model produces the least residual error having the mean, standard deviation, 75 and 99 percentile of 

(9.52 ± 7.90, 23.80 𝑎𝑛𝑑 36.63) 𝑘𝑚 respectively. However, NeQuick 2 and IRI-2016 produce quite similar residual error 

with the mean, standard deviation, 75 and 99 percentile of (25.24 ± 18.22, 60.11 𝑎𝑛𝑑 69.91) 𝑘𝑚 𝑎𝑛𝑑 (27.37 ±
17.29, 60.52 𝑎𝑛𝑑 71.46) 𝑘𝑚) respectively. Looking at the next minimum solar cycle 21 (1986) with yearly average 

sunspot number 14.74, ANN has the least error as well with mean, standard deviation, 75 and 99 percentile of (8.18 ±
7.03, 21.32 𝑎𝑛𝑑 31.90) 𝑘𝑚 respectively. Followed by NeQuick 2 with the mean, standard deviation, 75 and 99 percentile 

of (26.39 ± 20.14, 65.15 𝑎𝑛𝑑 75.25) 𝑘𝑚 respectively, while the most error occurred in IRI-2016 model with the mean, 

standard deviation, 75 and 99 percentile of (39.68 ± 24.16, 83.29 𝑎𝑛𝑑 93.77) 𝑘𝑚 respectively. Considering minimum 

year (1996) of the solar cycle 22 with yearly average sunspot number of 11.88, ANN still has the least mean, standard 

deviation, 75 and 99 percentiles of the residual errors (15.83 ± 16.06, 50.10 𝑎𝑛𝑑 61.82) 𝑘𝑚 though the error is much 

great than the residual error obtained in minimum solar cycle 20 and 21. It is as well worth noting NeQuick 2 and IRI-2016 

have very close residual errors as follow mean, standard deviation, 75 and 99 percentile (33.12 ±
22.83, 75.46 𝑎𝑛𝑑 92.01) 𝑘𝑚 and (33.93 ± 23.06, 74.25 𝑎𝑛𝑑 88.41) 𝑘𝑚 respectively. This means that the algorithms of 

the two models have some similarity and are essentially driving nearly by the same indices. It is interesting to note that the 

statistics of the residual errors for all the minimum solar activity of the cycles considered are below the mean errors  
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obtained for the whole 20 years, except ANN model during the solar cycle 22 (1996). The ANN output residual mean, 

standard deviation, 75 and 99 percentile (15.83 ± 16.06, 50.10 𝑎𝑛𝑑 61.82) 𝑘𝑚 errors are found above the ANN output 

residual mean, standard deviation, 75 and 99 percentile (11.67 ± 11.87, 34.77 𝑎𝑛𝑑 59.07) 𝑘𝑚 errors for the whole 20 

years considered.  

             
Figure 4: Monthly evolution of the observed and predicted hmF2 for the selected low solar years and their residual errors. The left hand side is the 

absolute hmF2 and right hand side contains the residual errors of the models. 

               
Figure 5: Histogram distribution of the residual error of the models during the selected low solar years. 
 

Figure 6a describes the monthly evolution of the hmF2, Figure 6b shows the evolution of the residual error along the years 

while Figure 7 illustrates the distribution of the residual error obtained from the models during the maximum solar activity 

of years (1969, 1979 and 1989) for the cycles 20, 21 and 22 with the yearly average of the sunspot number and their 

standard deviation of 149.37 ±  22.59, 220.30 ± 23.77 and 210.38 ± 36.30 respectively. It is cleared from Figure 6a that 

all the models are consistence in following the trend of evolution of the observed hmF2 just like during the solar minimum 

activities considered. However, in the year 1969 the hmF2 model output by ANN is more aligned with the observed, 

followed by IRI-2016 and NeQuick 2. But for years 1979 and 1989 ANN output is most aligned with the observed, 

followed by NeQuick 2 and IRI-2016. The better correspondent in ANN output over other models could be because it does 

not have any saturation point for the input indices used unlike NeQuick 2 that saturates at sunspot number 150 and solar 

flux 193. Figure 7 illustrates the distributions of the residual error at the maximum phase of the solar cycles considered, the 

mean of the residual error and its standard deviation together with 75 and 99 percentile are less at maximum phase of solar 

cycle 20 ANN (11.10 ± 9.64, 24.99 𝑎𝑛𝑑 51.28) 𝑘𝑚, NeQuick 2 (39.11 ± 21.78, 77.82 𝑎𝑛𝑑 94.32) 𝑘𝑚 and IRI-2016 

(33.94 ± 21.05, 73.95 𝑎𝑛𝑑 85.08) 𝑘𝑚 respectively, followed by cycle 21 ANN (13.81 ± 12.20, 41.90 𝑎𝑛𝑑 56.70) 𝑘𝑚, 

NeQuick 2 (38.70 ± 24.62, 84.60 𝑎𝑛𝑑 103.53) 𝑘𝑚 and IRI-2016 (50.05 ± 28.75, 98.96 𝑎𝑛𝑑 115.60) 𝑘𝑚 while the 

maximum error is obtained at the cycle 22 for ANN(15.82 ± 15.86, 49.56 𝑎𝑛𝑑 72.00) 𝑘𝑚, NeQuick (43.81 ±
32.25, 107.83 𝑎𝑛𝑑 120.58) 𝑘𝑚 and IRI(76.32 ± 48.61, 153.30 𝑎𝑛𝑑 176.81) 𝑘𝑚. This is almost corresponding to the 

results obtained during the minimum phase of each cycle, where the most errors were obtained at the cycle 22 and are well 

found above the average error of the whole period considered. These results show that ANN produces the least error 

compared with other models and the errors increases with the level of solar activity and the level of its fluctuations. The 

irregular behaviour of the sun at the cycle 22 as indicated by the standard deviation 18.42 for the minimum phase and 36.30 

for the maximum phase of cycle, a bit above other cycles, must have accounted for the highest error obtained in the cycle. 

Since the models are driving essentially by the solar indices. Comparatively, the results of the statistics have shown that in 

all geophysical conditions, ANN output gives a better hmF2 that correspondent well with the observed, followed by 

NeQuick 2 and least in IRI-2016. 
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Figure 6: Monthly evolution of the observed and predicted hmF2 for the selected high solar years and their residual errors. 

The left hand side is the absolute hmF2 and right hand side contains the residual errors of the models. 

         
Figure 7: Histogram distribution of the residual error of the models during the selected high solar years. 
 

3.2 Diurnal and Seasonal effect on the models  

Figure 8 illustrates the seasonal evolution of the hmF2 during the selected low solar years {upper panel (year 1976), middle 

panel (1986) and lower panel (1996)} and high solar activity considered {upper panel (year 1969), middle panel (1979) and 

lower panel (1989)}. The Figure affirms the consistence alignment of ANN prediction with the observed values irrespective 

of the level of solar activity and season. The daytime and nighttime are well captured by the network in all the seasons. 

However, the NeQuick 2 and the IRI-2016 output deviated a bit and this is more glaring during the high solar year of 1989 

where the residual error of the IRI-2016 reached ~100 km at the daytime and NeQuick 2 ~70 km. Looking closely at the 

daily variations of the models’ output with the observed, Figure 9 describes the diurnal trend of the models. Again, no 

much difference was observed at ANN output 

             
Figure 8: Seasonal diurnal evolution of the hmF2 during the selected low solar years {left, upper panel (year 1976), middle 

panel (1986) and lower panel (1996)} and high solar years {right, upper panel (year 1969), middle panel (1979) and lower 

panel (1989)} 

 

 

 

 

 

 
 

Journal of the Nigerian Association of Mathematical Physics Volume 61, (July – September 2021 Issue), 55 –62 



61 
 

Comparative Study of…     Oluwadare, Oluwadare, Abe, Odeyemi, Adeniyi and Oyeyemi         J. of NAMP 
[ 

 

 

 
Figure 9: Diurnal evolution of the hmF2 for a selected nominal day in year 1976. 
 

4 Conclusion 

The study has found ANN to have the output that better represent hmF2 in all the solar activities and seasons. It is 

interesting to note that NeQuick 2 and IRI-2016 essentially predicted the same trend with the residual mean and standard 

deviation error of (36 ± 26)𝑘𝑚 𝑎𝑛𝑑  respectively. However, both NeQuick 2 and IRI-2016 overestimate hmF2 in the 

region considered. 
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