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Abstract 

In this paper, the effect of stochastic volatility process on the value of an asset was 

investigated using boundary conditions. The partial differential equation with 

stochastic volatility term was reduced to financial partial differentiation by making 

some assumptions in the price of volatility risk and the constant risk-free rate. A set 

of functions was constructed which transformed the financial problem to a one 

dimensional heat equation through the exploits of partial differentiation and 

separation of variables. A function of volatility process and time was derived by 

setting a parameter 𝜶 which was a function of the volatility process equal to unity. 

Analytical solution of the heat equation which was subject to initial conditions was 

obtained using Fourier transformation. The transformation is a function of spatial 

variable (stochastic variable) which is independent of time. Uncertainty in the price 

history of the stock market was dictated as the parameters are varied with respect to 

the stochastic parameter. Existence of a unique solution was also achieved which 

represent the volatile behavior of the system. Furthermore, some numerical 

illustrations of the models which demonstrate the behavior of the system was 

obtained using the Maple software. The illustrations were examined by using 

different values of the parameters in the models. The results obtained are comparable 

to the results of cubic B-spline as found in literature. 
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Introduction  
The measure of the price fluctuation in the market is Market volatility. The fluctuations in prices will be more as the 

volatility goes higher not only in terms of frequency, but also in terms of difference. A low volatility means a stable and 

consistent market. This is a rate at which the price of a security increases or decreases for a given set of returns. It is 

measured by calculating the standard deviation of the annualized returns over a given period of time [1](Will, 2019). 

Volatility shows the range to which the price of a security may increase or decrease. 

 It measures the risk of a security. It is used in option pricing formula to gauge the fluctuations in the returns of the 

underlying assets. Volatility indicates the pricing behavior of the security and helps estimate the fluctuations that may 

happen in a short period of time. If the prices of a security fluctuate rapidly in a short time span, it is said to have high 

volatility. If the prices of a security fluctuate slowly in a longer time span, it is said to have low volatility  [1](Will, 2019). 

This study is aimed at the effect of volatility process on the value of an asset. There are several generalizations of the 

Black-Scholes model, BSM, that relax various model assumptions. One of these assumptions is that volatility is constant. It 

has been long known that this is not supported empirically. Two main generalizations to the constant volatility assumption 

are given by the local volatility and stochastic volatility models. The local volatility models write volatility as a 

deterministic function of time and stock price, whereas the stochastic volatility models describe the behavior of volatility by 

another stochastic differential equation. A comprehensive treatment of stochastic volatility models can be found in [ 2] 

(Hung et al., 2016). 
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A partial differential equation describing the value of any asset 𝑢(𝑠, 𝑣, 𝑡), including accrued payment satisfies the equation 

of the form  

 
1

2
𝑣𝑠2

𝜕2𝑢

𝜕𝑠2
+ 𝜌𝜎𝑣𝑠

𝜕2𝑢

𝜕𝑠𝜕𝑣
+
1

2
𝑣𝜎2

𝜕2𝑢

𝜕𝑣2
+ 𝑟𝑠

𝜕𝑢

𝜕𝑠
+ {𝑘[𝜃 − 𝑣(𝑡)] − 𝜆(𝑠, 𝑣, 𝑡)}

𝜕𝑢

𝜕𝑣
 

                −𝑟𝑢 +
𝜕𝑢

𝜕𝑡
= 0.     (1.1) 

The unspecified term 𝜆(𝑠, 𝑣, 𝑡) represents the price of volatility risk and must be independent of the particular asset. 𝑟 is the 

constant risk-free rate, 𝑘 is the mean reversion speed for the variance, 𝜃 is the mean reversion level for the variance while 

S(t) and v(t) are the price and volatility process respectively at time 𝑡. 𝜌 ∈ [−1,1] is the correlation coefficient. The 

volatility of volatility is 𝜎. To ensure that zero is an unattainable boundary for the volatility process 𝑣(𝑡), then 4𝑘𝜃 >  𝜎2. 

The volatility 𝑣(𝑡) process follows the pattern of [ 3] (Rubinstein, 1985) given by       

𝑑𝑣(𝑡) = 𝑘[𝜃 − 𝑣(𝑡)]𝑑𝑡 + 2𝛿√𝑣(𝑡)𝑑𝑤2(𝑡),    (1.2)    

where 𝑤2(𝑡) has correlation 𝜌 with 𝑤1(𝑡). The assumption herein is that the spot asset at time 𝑡 follows the diffusion 

𝑑𝑠(𝑡) = 𝜇𝑠𝑑𝑡 + √𝑣(𝑡)𝑠𝑑𝑤1(𝑡),     (1.3)    

where 𝑤1(𝑡) and 𝑤2(𝑡) are Wiener process which takes  account of  the leverage effect, stock returns and implied 
volatility which are negatively correlated. Partial deferential equations (PDE.s) are used to model and analyse dynamic 

systems in fields as diverse as physics, biology, economics, and finance. The linear parabolic ones (LPDE.s) are one class 

of PDE.s which has received particular attention. The LPDEs make up a large class of PDE.s which is of a succinctly 

simple structure such that a thorough analysis of them is possible. In [4,5] (Friedman, 1964; Evans, 1998) any interested 

reader can find an introduction and detailed analysis of their properties. 

In finance, for a contingent claim on a single asset, the generic PDE can be written as 
𝜕𝑢

𝜕𝑡
+  𝑎(𝑥, 𝑡)

𝜕2𝑢

𝜕𝑥2
+ 𝑏(𝑥, 𝑡)

𝜕𝑢

𝜕𝑥
+ 𝑐(𝑥, 𝑡)𝑢 =  0,     (1.4)                                         

where t either represents calendar time or time-to-expiry, x represents either the value of the underlying asset or some 

monotonic function of it (e.g. log(st); log-spot) and u is the value of the claim (as a function of x and t). The terms a(. ), 
b(. ) and c(. ) are the diffusion, convection and reaction coefficients respectively, and this type of PDE is known as a 

convection-diffusion PDE.2 This type of PDE can also be written in the form [6]  (Richard, 2013) as 
𝜕𝑢

𝜕𝑡
+  𝑎(𝑥, 𝑡)

𝜕

𝜕𝑥
(𝛼(𝑥, 𝑡)

𝜕𝑢

𝜕𝑥
) + 𝑏(𝑥, 𝑡)

𝜕

𝜕𝑥
(𝛽(𝑥, 𝑡)𝑢) + 𝑐(𝑥, 𝑡)𝑢 =  0.     (1.5)         

This form occurs in the Fokker-Planck (Kolmogorov forward) equation that describes the evolution of the transition density 

of a stochastic quantity (e.g. a stock value). This can be put in the form of equation (1.4) if the functions 𝛼 and 𝛽 are both 

once differentiable in x - although it is usually better to directly discretise the form given. A simple application in finance 

for this PDE can be found in [7] (Friedman, 1975).  Through the celebrated Feynman-Kac representation of solutions to 

PDE.s, LPDEs and discussion models are closely linked [ 8](Kristensen, 2004). This leads to the representation of 

derivative prices as solutions to PDE.s in asset pricing theory. To price contingent claim we must make assumption that 

gives the price of volatility risk [ 9] (Heston, 1993). Several techniques have been used by many authors to study the 

existence of solution PDEs with stochastic volatility. In [10](Kanaya and Kristensen, 2016), a two-step estimation method 

of stochastic volatility models was proposed. In the first step, the non-parametrically (unobserved) instantaneous volatility 

process is estimated. In the second step, the filtered/estimated volatility process replacing the latent process and the 

standard estimation methods for fully observed diffusion processes are employed.  This method is an extension of the 

method in [11] (Kristensen, 2008).  In [12, 13] (Heston, 1993; Stein and Stein, 1991), a closed form solution was obtained 

for a European call option that satisfies the PDE (1.1) while [14] Manga et al., (2019) focused on analytical approximations 

and a study of sensitivities (Greeks) of Asian options with Heston stochastic volatility model parameters. 

In this paper, a set of functions is constructed, that transforms the problem of equation (1.1) into a heat equation. Analytical 

solutions are obtained, and sensitivity analysis given in a concrete setting by the assistance of some boundary conditions. 

From equation (1.1), set 𝑆 = 0, for the interest in the present (and not the future) value of asset so as to ascertain the effect 

of the volatility process. Thus, ⅄(0, 𝑣, 𝑡) = 0 [15] (Osu et al., 2020).  Furthermore, we assume that the stochastic rate, 𝑟, 

changes constantly with volatility process. That is 
𝑑𝑟

𝑑𝑣
= 𝐴 ⇒ 𝑟 = 𝐴𝑣.     (1.6) 

Equation (1.1) reduces to a form equation (1.5) as; 
1

2
𝑣𝜎2

𝜕2𝑢

𝜕𝑣2
+ 𝑘(𝜃 − 𝑣)

𝜕𝑢

𝜕𝑣
− 𝐴𝑣𝑢 +

𝜕𝑢

𝜕𝑡
= 0.    (1.7) 

In what follows, we construct functions  𝛼(𝑣) and 𝛽(𝑡) so that the set of equations 

𝑢(𝑣, 𝑡) = 𝑤(𝑧, 𝜏, )𝑒−𝜑(𝑣,𝑡),     (1.8) 

𝑧 = 𝑧(𝑣) = 𝛼(𝑣),      (1.9) 
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and 

𝜏 = 𝜏(𝑡) = 𝛽(𝑡),    (1.10)                                   

transforms the financial partial differential of equation (1.7) into a heat equation of the form;  
𝜕2𝑤

𝜕𝑧2
= 2

𝜕𝑤

𝜕𝜏
 .                                 (1.11) 

 

Materials and Methods 

Stochastic Volatility. The word stochastic refers to something that is randomly determined and not be predicted precisely. 

In the context of stochastic modeling, it refers to successive value of a random variable that are not independent. Stochastic 

volatility refers to the fact that the volatility of asset price is not constant as assumed in the Black Scholes options pricing 

model. Stochastic volatility modeling attempts to correct the problem with Black Scholes by allowing volatility to vary over 

time. It also treats price volatility as a random variable. Allowing the price to vary in the stochastic volatility models 

improved the accuracy of calculations and forecasts [1] (Will, 2019). 

Boundary Condition. This is a set of conditions specified for the behavior of the solution to a set of differential or partial 

differential equations at the boundary of its domain. A system with boundary conditions is known as the boundary value 

problem. 

Solution of a Boundary Value Problem. This is a function 𝑢 that satisfies the differential equation on an open region 𝐷, 
continuous on 𝐷 ∪ 𝜕𝐷 and satisfies the specified boundary condition on 𝜕𝐷. 
Heat Equation. Heat equation is a partial differential equation that describes how the distribution of some quantity such as 

heat evolves over time in a solid medium as it spontaneously flow from higher places to lower places. It is a special case of 

the diffusion equation [16](Rozier, 1984). 

Separation of Variables. Variable separation is a method of solving ordinary and partial differential equations in which 

algebra allows one to rewrite an equation so that each of two variables occurs on a different sides of the equation [17]  

(Andrei, 2001). 

Fourier Transform. This is a tool that breaks a waveform (a function or signal) into an alternate representation 

characterized by sine and cosines. Fourier transform is also a mathematical technique that transform a function 𝑥(𝑡) into a 

function of frequency  𝑋(𝑤). It is a special case of the Fourier series when the period 𝑇 ends to infinity. 
 

Results 
Given equation (1.7) implies that 
𝜕𝑢

𝜕𝑡
=
𝜕

𝜕𝑡
(𝑤𝑒−𝜑(𝑣,𝑡)) =

𝜕𝑤

𝜕𝑡
𝑒−𝜑(𝑣,𝑡) + 𝑤

𝜕

𝜕𝑡
𝑒−𝜑(𝑣,𝑡) 

=
𝜕𝑤

𝜕𝑡
𝑒−𝜑(𝑠,𝑣,𝑡) − 𝑤𝑒−𝜑(𝑠,𝑣,𝑡)

𝜕𝜑

𝜕𝑡
 . 

By chain rule for 𝑤 = 𝑤(𝑧, 𝜏, 𝜃) w.r.t gives 
𝜕𝑤

𝜕𝑡
=

𝜕𝑤

𝜕𝑧

𝜕𝑧

𝜕𝑡
+
𝜕𝑤

𝜕𝜏

𝜕𝜏

𝜕𝑡
= 𝛽′

𝜕𝑤

𝜕𝑡
. 

Therefore 
𝜕𝑢

𝜕𝑡
= 𝛽′(𝑡)

𝜕𝑤

𝜕𝑡
𝑒−𝜑(𝑠,𝑣,𝑡) − 𝑤𝑒−𝜑(𝑠,𝑣,𝑡)

𝜕𝜑

𝜕𝑡
.    (1.12)                  

On the other hand                  
𝜕𝑢

𝜕𝑣
=
𝜕

𝜕𝑣
(𝑤𝑒−𝜑(𝑣,𝑡)) =

𝜕𝑤

𝜕𝑣
𝑒−𝜑(𝑣,𝑡) + 𝑤

𝜕

𝜕𝑣
(𝑒−𝜑(𝑣,𝑡)) 

= (
𝜕𝑤

𝜕𝑧

𝜕𝑧

𝜕𝑣
+
𝜕𝑤

𝜕𝜏

𝜕𝜏

𝜕𝑣
) 𝑒−𝜑(𝑣,𝑡) − 𝑤𝑒−𝜑(𝑣,𝑡)

𝜕𝜑

𝜕𝑣
. 

 But  

 
𝜕𝑤

𝜕𝑧

𝜕𝑧

𝜕𝑣
+
𝜕𝑤

𝜕𝜏

𝜕𝜏

𝜕𝑣
= 𝛼′(𝑣)

𝜕𝑤

𝜕𝜏
, 

Therefore 
𝜕𝑢

𝜕𝑣
= 𝛼′(𝑣)

𝜕𝑤

𝜕𝜏
𝑒−𝜑(𝑠,𝑣,𝑡) − 𝑤𝑒−𝜑(𝑠,𝑣,𝑡)

𝜕𝜑

𝜕𝑣
 ,    (1.13) 

Again  
𝜕2𝑢

𝜕𝑣2
=
𝜕

𝜕𝑣
(
𝜕𝑢

𝜕𝑣
) =

𝜕

𝜕𝑣
(
𝜕𝑤

𝜕𝑣
𝑒−𝜑(𝑣,𝑡) − 𝑤𝑒−𝜑(𝑣,𝑡)

𝜕𝜑

𝜕𝑣
) 

=
𝜕

𝜕𝑣
(𝛼′(𝑣)

𝜕𝑤

𝜕𝜏
𝑒−𝜑(𝑣,𝑡)) −

𝜕

𝜕𝑣
(𝑤𝑒−𝜑(𝑣,𝑡)

𝜕𝜑

𝜕𝑣
) 
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= 𝛼′′(𝑣)
𝜕𝑤

𝜕𝜏
𝑒−𝜑(𝑣,𝑡) + 𝛼′(𝑣)𝑒−𝜑(𝑣,𝑡)

𝜕

𝜕𝑣
(
𝜕𝑤

𝜕𝜏
) + 𝛼′(𝑣)

𝜕𝑤

𝜕𝜏

𝜕

𝜕𝑣
𝑒−𝜑(𝑣,𝑡) 

−
𝜕𝑤

𝜕𝑣
 𝑒−𝜑(𝑣,𝑡)

𝜕𝜑

𝜕𝜑
+ 𝑤

𝜕

𝜕𝑣
𝑒−𝜑(𝑣,𝑡)

𝜕𝜑

𝜕𝑣
+ 𝑤𝑒−𝜑(𝑣,𝑡)

𝜕2𝜑

𝜕𝑣2
   

= 𝛼′′(𝑣)
𝜕𝑤

𝜕𝜏
𝑒−𝜑(𝑣,𝑡) + 𝛼′(𝑣)𝑒−𝜑(𝑣,𝑡)[

𝜕

𝜕𝜏
(
𝜕𝑤

𝜕𝜏
)
𝜕𝜏

𝜕𝑣
+

𝜕

𝜕𝑧
(
𝜕𝑤

𝜕𝜏
)
𝜕𝑧

𝜕𝑣
]       

+𝛼′(𝑣)
𝜕𝑤

𝜕𝜏
(−𝑒−𝜑(𝑠,𝑣,𝑡)

𝜕𝜑

𝜕𝑣
) − 𝛼′(𝑣)

𝜕𝑤

𝜕𝜏
𝑒−𝜑(𝑠,𝑣,𝑡)

𝜕𝜑

𝜕𝑣
 +𝑤𝑒−𝜑(𝑠,𝑣,𝑡)

𝜕2𝜑

𝜕𝑣2
−𝑤𝑒−𝜑(𝑠,𝑣,𝑡)

𝜕2𝜑

𝜕𝑣2
   

= 𝛼′′(𝑣)
𝜕𝑤

𝜕𝜏
𝑒−𝜑(𝑣,𝑡)  + 𝛼′(𝑣)𝑒−𝜑(𝑣,𝑡) [

𝜕2𝑤

𝜕𝜏2
𝛼′(𝑣)] − 𝛼′(𝑣)𝑒−𝜑(𝑣,𝑡)

𝜕𝑤

𝜕𝜏

𝜕𝜑

𝜕𝑣
 

  −𝛼′(𝑣)𝑒−𝜑(𝑣,𝑡)
𝜕𝑤

𝜕𝜏

𝜕𝜑

𝜕𝑣
+ 𝑤𝑒−𝜑(𝑣,𝑡) (

𝜕𝜑

𝜕𝑣
)
2

  − 𝑤𝑒−𝜑(𝑣,𝑡)
𝜕2𝜑

𝜕𝑣2
 .  

Hence   

 
𝜕2𝑢

𝜕𝑣2
= 𝛼′′(𝑣)

𝜕𝑤

𝜕𝜏
𝑒−𝜑(𝑣,𝑡) + (𝛼′(𝑣))

2
𝑒−𝜑(𝑣,𝑡)

𝜕2𝑤

𝜕𝜏2
− 𝛼′(𝑣)𝑒−𝜑(𝑠,𝑡)

𝜕𝑤

𝜕𝑧

𝜕𝜑

𝜕𝑣
  

+𝑤𝑒−𝜑(𝑣,𝑡) (
𝜕𝜑

𝜕𝑣
)
2
  +𝑤𝑒−𝜑(𝑠,𝑣,𝑡)

𝜕2𝜑

𝜕𝑣2
  −𝑤𝑒−𝜑(𝑣,𝑡)

𝜕2𝜑

𝜕𝑣2
,     (1.14) 

Substituting for equations (1.12), (1.13) and (1.14) into equation (1.7) gives 

1

2
𝑣𝜎2{𝛼′′(𝑣)

𝜕𝑤

𝜕𝑧
𝑒−𝜑(𝑣,𝑡)  + 𝛼′(𝑣)𝑒−𝜑(𝑣,𝑡) [

𝜕2𝑤

𝜕𝑧2
𝛼′(𝑣)] − 𝛼′(𝑣)𝑒−𝜑(𝑣,𝑡)

𝜕𝑤

𝜕𝑧

𝜕𝜑

𝜕𝑣
 

 −𝛼′(𝑣)𝑒−𝜑(𝑣,𝑡)
𝜕𝑤

𝜕𝑧

𝜕𝜑

𝜕𝑣
+𝑤𝑒−𝜑(𝑣,𝑡) (

𝜕𝜑

𝜕𝑣
)
2
  − 𝑤𝑒−𝜑(𝑣,𝑡)

𝜕2𝜑

𝜕𝑣2
} 

+𝑘(𝜃 − 𝑣) (𝛼′(𝑣)
𝜕𝑤

𝜕𝜏
𝑒−𝜑(𝑠,𝑣,𝑡) −𝑤𝑒−𝜑(𝑠,𝑣,𝑡)

𝜕𝜑

𝜕𝑣
) − 𝐴𝑣𝑤 + 𝛽′(𝑡)

𝜕𝑤

𝜕𝑡
𝑒−𝜑(𝑠,𝑣,𝑡) −𝑤𝑒−𝜑(𝑠,𝑣,𝑡)

𝜕𝜑

𝜕𝑡
= 0. 

That is  

𝛽′(𝑡)
𝜕𝑤

𝜕𝑡
+
1

2
𝑣𝜎2  (𝛼′(𝑣))

2
 
𝜕2𝑤

𝜕𝑧2
+ (

1

2
𝑣𝜎2 𝛼′′(𝑣) − 𝑣𝜎2

𝜕𝜑

𝜕𝑣
𝛼′(𝑣) + 𝑘(𝜃 − 𝑣)𝛼′(𝑣))

𝜕𝑤

𝜕𝜏
 

− [𝐴𝑣 +
1

2
𝑣𝜎2 (

𝜕𝜑

𝜕𝑣
)
2

−
1

2
𝑣𝜎2

𝜕2𝜑

𝜕𝑣2
+ 𝑘(𝜃 − 𝑣)

𝜕𝜑

𝜕𝑣
+

𝜕𝜑

𝜕𝑡
] 𝑤 = 0.    (1.15)                 

In equation (1.15) set  
1

2
𝑣𝜎2 𝛼′′(𝑣) − 𝑣𝜎2

𝜕𝜑

𝜕𝑣
𝛼′(𝑣) + 𝑘(𝜃 − 𝑣)𝛼′(𝑣) = 0  (1.16)           

and 

𝐴𝑣 +
1

2
𝑣𝜎2 (

𝜕𝜑

𝜕𝑣
)
2

−
1

2
𝑣𝜎2

𝜕2𝜑

𝜕𝑣2
+ 𝑘(𝜃 − 𝑣)

𝜕𝜑

𝜕𝑣
+

𝜕𝜑

𝜕𝑡
= 0   (1.17)                                                                                                                       

to get  

𝛽′(𝑡)
𝜕𝑤

𝜕𝑡
= −

1

2
𝑣𝜎2  (𝛼′(𝑣))

2
 
𝜕2𝑤

𝜕𝑧2
 .                                  (1.18) 

In (1.18) set 

𝛽′(𝑡) = −𝑣𝜎2  (𝛼′(𝑣))
2
 .                                        (1.19) 

The form (1.19) means that  
𝜕𝑤

𝜕𝑡
= 

1

2

𝜕2𝑤

𝜕𝑧2
,                                                     (1.20) 

is a heat equation. 

Now equation (1.19) must be a function of 𝑡 only. Thus set 𝑣  (𝛼′(𝑣))
2
= 1 to get 

 𝛼′(𝑣) = ±
1

√𝑣
= ±𝑣−

1

2. 

Thus 

𝛼(𝑣) = ±2√𝑣 + 𝐵.                                    (1.21) 

Hence   𝛽′(𝑡) = −𝜎2 , so that  

𝛽(𝑡) = −𝜎2𝑡 + 𝐶.                                       (1.22) 

To derive the formula for 𝜑(𝑣, 𝑡),  when 𝛼(𝑣) = 2√𝑣 + 𝐵, we note that for this case, 𝛼 ΄ = 𝑣−
1

2 and 𝛼 ΄΄ = −
1

2
𝑣−

3

2 , so that 

equation  
1

2
𝑣𝜎2  (−

1

2
𝑣−

3

2 ) − 𝑣𝜎2
𝜕𝜑

𝜕𝑣
𝑣−

1

2 + 𝑘(𝜃 − 𝑣)𝑣−
1

2 = 0. 

That is  
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−
1

4
𝜎2  − 𝑣𝜎2

𝜕𝜑

𝜕𝑣
+ 𝑘(𝜃 − 𝑣) = 0.                                 (1.23) 

Without loss of generality, set  
1

4
𝜎2 = 𝑘𝜃,                                              (1.24) 

then one gets from (1.23) 
𝜕𝜑

𝜕𝑣
= −

𝑘

𝜎2
= −

1

4𝜃
.                                 (1.25) 

Consequently, 
𝜕2𝜑

𝜕𝑣2
= 0 and (

𝜕𝜑

𝜕𝑣
)
2

=
1

16𝜃2
.                     (1.26) 

From equation (1.25), 

𝜑(𝑣, 𝑡) = −
1

4𝜃
𝑣 + ∅(𝑡),               (1.27) 

implies that ∅ is independent of 𝑣, that is 
𝜕∅

𝜕𝑣
= 0. Using equations (1.26), (1.27) and (1.16), one gets; 

∅΄(𝑡) =
𝜕𝜑

𝜕𝑡
= −𝐴𝑣 −

1

2
𝑣𝜎2 (

1

4𝜃
)
2

+
1

2
𝑣𝜎2(0) + 𝑘(𝜃 − 𝑣)

1

4𝜃
    

= −𝐴𝑣 −
𝑘𝑣

8𝜃
+

𝑘

4
−

𝑘𝑣

4𝜃
  

= −(𝐴 +
3𝑘

8𝜃
) 𝑣 +

𝑘

4
 . 

Therefore 

∅(𝑡) = −(𝐴 +
3𝑘

8𝜃
) 𝑣𝑡 +

𝑘

4
𝑡. 

Since  
𝜕∅

𝜕𝑣
= 0, we must have 𝐴 = −

3𝑘

8𝜃
, so that 

∅(𝑡) =
𝑘

4
𝑡. 

Accordingly 

𝜑(𝑣, 𝑡) =
𝑘

4
𝑡 −

1

4𝜃
𝑣 =

1

4
(𝑘𝑡 −

𝑣

𝜃
).                   (1.28) 

In the sequel we state; 

Theorem 2.1: The set of functions 

𝑢(𝑣, 𝑡) = 𝑤(𝑧, 𝜏)𝑒−𝜑(𝑣,𝑡) 

𝑧 = 2√𝑣
𝜏 = −4𝑘𝜃𝑡

𝜑(𝑣, 𝑡) =
1

4
(𝑘𝑡 −

𝑣

𝜃
)         }

 
 

 
 

                               (1.29) 

transforms the linear pde  
1

2
𝑣𝜎2

𝜕2𝑢

𝜕𝑣2
+ 𝑘[𝜃 − 𝑣(𝑡)]

𝜕𝑢

𝜕𝑣
− 𝐴𝑣𝑢 +

𝜕𝑢

𝜕𝑡
= 0 

into a heat equation of the form 
𝜕𝑤

𝜕𝜏
=

1

2

𝜕2𝑤

𝜕𝑧2
. 

It follows that a European call option with strike 𝐾 and maturity at time 𝑇 satisfies the PDE (1.1) subject to the boundary 

conditions; 

   

𝑢(𝑠, 𝑣, 𝑇) = max(𝑣, 1),

𝑢(𝑠, 0, 𝑡) = 0,
𝜕𝑢

𝜕𝑣
(𝑠.∞, 𝑡) = 1,

1

2
𝑣𝜎2

𝜕2𝑢

𝜕𝑣2
+ {𝑘[𝜃 − 𝑣(𝑡)]}

𝜕𝑢

𝜕𝑣
− 𝐴𝑣𝑢 +

𝜕𝑢

𝜕𝑡
= 0,

𝑢(∞, 𝑣, 𝑡) = 0. }
  
 

  
 

     (1.30) 

 

Exponential (Analytical) solution 

For the exponential solution of the heat equation (2.9), we consider Fourier transform of the  

Initial-value problem for the heat equation of the form; 

{
𝑤𝜏 − ∆𝑤 = 0 𝑖𝑛 ℝ𝑛 × (0,∞)

𝑤 = 𝑔 𝑜𝑛 ℝ𝑛 × (𝜏 = 0)
 .                          (1.31)        

A method for solving (1.20) by using (1.31) and computing 𝑤̂, is therefore the Fourier 

transform of 𝑤 in the spatial variable 𝑣 only. Thus 
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 {
𝑤̂𝜏 + |𝑧|

2𝑤̂ = 0   𝑓𝑜𝑟 𝑡 > 0
𝑤 = 𝑔  𝑓𝑜𝑟 𝜏 = 0;

 

 

whence  

𝑤̂ = 𝑒−|𝑧|
2𝑡𝑔̂. 

Consequently, 𝑤 = (𝑒−|𝑧|
2𝑡𝑔̂)

῞̌
, so that 

𝑤 =
𝑔∗𝐹

(4𝜋)𝑛 2⁄ ,                                               (1.32) 

where 𝐹̂ = 𝑒−|𝑧|
2𝜏. But 

𝐹 = (𝑒−|𝑧|
2𝜏)

῞̌
=

1

(4𝜋)𝑛 2⁄ ∫ 𝑒𝑖𝑣.𝑧−|𝑧|
2𝜏𝑑𝑧 =

1

(4𝜋)𝑛 2⁄ 𝑒
−
|𝑧|2

4𝜏  
𝑅𝑛

. 

By (1.32), we get 

𝑤(𝑣, 𝜏) =
1

(8𝜋𝜏)𝑛 2⁄ ∫ 𝑒−
|𝑣−𝑧|2

4𝑡  
𝑅𝑛

𝑔(𝑧)𝑑𝑧     𝑣 ∈  ℝ𝑛 , 𝜏 > 0.         (1.33) 

This implies that by invoking (1.28), one gets 

𝑢(𝑣, 𝜏) =
𝑒
−
1
4
(𝑘𝜏) 

(4𝜋𝜏)𝑛 2⁄ ∫ 𝑒
−(

|𝑣−2√𝑣|
2

4𝜏
 +

𝑣

4𝜃
)
 

𝑅𝑛
𝑔(2√𝑣)𝑑√𝑣 ,                           (1.34) 

and 

𝑢(𝑣, 𝑡) =
𝑒− 𝑘

2𝜃𝑡

(16𝑘𝜃𝜋𝑡)𝑛 2⁄ ∫ 𝑒
−(

|𝑣−2√𝑣|
2

16𝑘𝜃𝑡
 +

𝑣

4𝜃
)
 

𝑅𝑛
𝑔(2√𝑣)𝑑√𝑣.                         (1.35) 

 

Numerical Results 

In this section, some numerical illustrations of our results in the above sections in a specific example is presented using the 

Maple software. This is to enable us to observe the behaviour of the volatility as against the expected final surplus of the 

worth of investment(see figures 1-6).The values of parameters that considered in this paper, are the following;    t=2.5  .5 v= 

3.7     theta= 3.5  k=10,  L=4 H=6,  L=150, H=3, theta= 3.5, t=60, k=10 are applied in equation (1.35). 

 (a)                      (b) 

 

Figure 1: Profiles of Eq. (1.35), Substituting different Values of the Parameter 𝑣, 𝑡, 𝜎, 𝜃 for 2D Graph (m=n).   

 

(a)                (d)        (e)  

Figure 2: Profiles of Eq. (1.35) , Substituting different Values of the Parameters 𝑣, 𝑡, 𝜎, 𝜃 for 2D Graph. 
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     (a)       (b)              

Figure 3:   Profiles of Eq. (1.35) , Substituting different Values of the Parameters 𝑣, 𝑡, 𝜎, 𝜃 for 2D Graph   

(b)     (a)  

Figure 4: Profiles of Eq. (1.35), Substituting different Values of the Parameters 𝑣, 𝑡, 𝜎, 𝜃 for the 3D Graphs. 

   (a) (b) 

Figure 5: Profiles of Eq. (1.35), Substituting different Values of the Parameters 𝑣, 𝑡, 𝜎, 𝜃 for the 3D Graphs. 

 

 
Figure 6: Profiles of Eq. (1.35) , Substituting different Values of the Parameters 𝑣, 𝑡, 𝜎, 𝜃 for the 3D Graphs. 

 

Discussion  
This study is supported by efficient numerical simulations showing the behaviour of the system using the values of the 

parameters. 

Figure 1 is the numerical illustrations of the results for different values of the parameters. In (a) there are existence of 

incomplete cone shape and unequal amplitude with respect to the parameters showing discontinuity in the buying and 

selling of asset. This invariably causes distortion in stock prices. This agrees with the numerical solution for 𝛼 =  1, ℎ =
0.1 , ∆𝑡 =  0.01 as in [18] (Demir and Bildik, 2012). Unequal amplitude in (b) shows sensational variations in terms of 

prices which is highly periodic in nature. The downwall turn  dictates helding of assets which in turns leads to recovery in 

the market. 

In figure 2, 2 dimensional graph were obtained for different values of the parameters. The trajectory is shown using 

frequency dependent. Jump continuities which arise as a result of volatility parameter was obtained. The jump continuties 

continued over time as the frequency is nearly uniform convergence. 
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In figure 4, positve trajectories were obtained with high amplitude. This is caused by the decrease in the volatility in 

relation to income price. Frequency convergence in term of price was obtained which shows positve synergist profit. The 

wavelike nature is positive due to high convergence rate. 

In figure 5, 3 dimensional plot of the stochastic parameters were obtained. The wavelike nature was obtained but restricted 

to quadratic nature. This quadratic nature shows uncertainty, inequality in the values of assets that is held long or protected 

against a rise in the value of assets held short. In this case, the price may be inconsistent with the value of the option as 

predicted by the PDE with stochastic volatility. This agrees with the geometrical Interpretation of Heat equation at different 

time level 𝑡 = 0.1 and 0.2 𝑎𝑡 0 < 𝑣 < 5 in [6] using cubic B-spline. 

In figure 6,  3 dimensional graph for different parameters were obtained. In (a) to (b) the wavelike form is cubic in nature 

showing that the PDE is nonlinear. This nonlinearity causes speculations in the market which depend on the volatility rate.  
 

Conclusion 
In this study, the Fourier transformation was successfully utilized for the existence of unique solution of the partial 

differential equation with stochastic volatility. The transform equation was expressed in terms of the volatility parameters 

which have effects on the system. These effects were critically examined using numerical simulation. The numerical 

simulation which describes the behaviour of the system gave different trajectories for different values of the parameters. 

The different trajectories obtained dictate uncertainty in the price history of the stock market which is determined by the 

stochastic parameter (v). This invariably leads to instability in the stock price. 
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