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Abstract 
 

In this study, we developed a new approximate method of solution for various heat 

equations. We study the numerical accuracy of the method. Detailed numerical results 

have shown that the method provides better results than the known explicit finite 

difference method. There is no semi-discretization involved and no reduction of PDE to 

a system of ODEs in the new approach, but rather a system of algebraic equations 

directly results.  
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1   Introduction 

In this study, we will deal with a single parabolic partial differential equation in one space variable, where t and x are the 

time and space coordinates respectively, and the quantities h and k are the mesh sizes in the space and time directions. 

We consider,      
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We are interested in the development of numerical techniques for solving heat equations. Of recent, there is a growing 

interest concerning continuous numerical methods of solution for ODEs [1, 2]. We are interested in the extension of a 

particular continuous method to solve the heat equation. This is done based on the collocation and interpolation of the PDE 

directly over multi steps along lines but without reduction to a system of ODEs. We intend to avoid the cost of solving a 

large system of coupled ODEs often arising from the reduction method by a semi - discretization. The method also, 

eliminates the usual draw-back of stiffness arising in the conventional reduction method by semi-discretization [3,4]. 

 

2   The Solution Method 

We subdivide the interval bx 0 into N equal subintervals by the grid points Nmmhx
m

,...,0,   where bNh  .  On 

these meshes we seek l step approximate solution to  txU ,  of the form 
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 The basis function 2...,,0),,(  prtxQ

r
 are assumed known, 

r
a are constants to 

be determined  and slp  , where s  is the number of collocation points. The equality holds if the number of interpolation 

points used is equal to l . There will be flexibility in the choice of the basis function  txQ
r

, as may be desired for specific 

application. For this work, we consider the Taylor’s polynomial   rr

r
txtxQ , . The interpolation values 

nlmnm
UU
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assumed to have been determined from previous steps, while the method seeks to obtain 
nlm

U
,

[5,6,7]. We apply the  
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above interpolation conditions on eqn. (2.0) to obtain 
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We can write eqn. (2.1) as a simple matrix equation in the augmented form as, 
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Using three interpolation points and one collocation point, implies that 1s , 3,4  lp and 2,1,0r . 

Substituting for p in eqn. (2.1) we have,  
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                (2.3) 

Putting the values of g in eqn. (2.3) and writing it as matrix in augmented form  

we have,  
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From eqn. (2.4) we obtain the following values 
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Putting the above values in eqn. (2.4) becomes 
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We solve eqn. (2.5) to obtain the value of
2

a to be 
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When we substitute 2,1,0r in eqn. (2.0) we obtain   
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By substitution of 
210

QandQQ in eqn. (2.6) we obtain        
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Substituting the value of 
2

a in eqn. (2.7) we have  
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Taken the first and second derivatives of eqn. (2.8) with respect to x we have 
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  we collocate eqn. (2.9) at 
n

tt  to arrive at  
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Similarly, we reverse the roles of x and t in eqn. (2.0), and we also subdivide the interval Tt 0 into y  equal 

subintervals by the grid points ynnkt
n

,...,0,   where .Tyk   On these meshes we seek l step approximate 

solution to  txU ,  of the form 
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Such that Tttt
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r
a are constants to 

be determined and slp  , where s  is the number of collocation points. The equality holds if the number of interpolation 

points used is equal to l . There will be flexibility in the choice of the basis function  txQ
r

, as may be desired for specific 

application. For this method, we consider the Taylor’s polynomial   rr
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9]. We apply the above interpolation conditions on Eqn. (2.11) to obtain 
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We can write (2.12) as a simple matrix equation in the augmented form as 
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Using two interpolation points and one collocation point in eqn. (2.13) implies that  

21,0,3  lrp and 
2

1
,0f , and by substitution eqn.(2.13) becomes 
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From eqn. (2.14) we obtain the following values: 
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Substituting the values of eqn. (2.15) into eqn. (2.14), we have this matrix below 
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Solving eqn. (2.16) for value of 
1

a we obtain  
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we substitute ,1,0r into eqn.(2.11), we obtain  
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By substituting the values of 
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Taken the first derivatives of equation (2.18) with respect to t we obtain 
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We collocate eqn. (2.19) at 
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But from eqn. (1.0) we discovered that eqn. (2.20) is equal to eqn. (2.10), which implies that 
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Eqn. (2.21) is a new scheme for solving the heat equation. 

To illustrate this method, we use it to solve problems (5.1) and (5.2) respectively. 

 

3. Advantages of the method 

1) We intend to avoid the cost of solving a large system of coupled ODEs often arising from the reduction methods. 

2) We also intend to eliminate the usual draw-back of stiffness arising in the conventional reduction method by semi-

discretization. 

4.   Specific Problem 

   Example 4.1 

  Use the scheme to approximate the solution to the heat equation 
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Table 1: Result of action of Eqn. (2.21) on problem 4.1 

x  New Method 
 txU ,  

Schmidt Method 

 txU ,  
Exact Solution 

 txU ,  
                         Errors 

New Method Schmidt Method 

0 0 0 0 0 0 

6

  0.46650635 0.47320508 0.466878559 3.7 X E-4 6.326522XE-3 

3

  0.808012701 0.819615241 0.808657385 6.4 X E-4 1.095785XE-2 

2

  0.933012701 0.946410161 0.933757118 7.4 X E-4 1.265300XE-2 

3

2  0.808012701 0.819615241 0.808657385 6.4 X E-4 1.095785XE-2 

6

5  0.46650635 0.47320508 0.466878559 3.7 X E-4 6.326522XE-3 

  0 0 0 0 0 
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Example 4.2 

Use the scheme to approximate the solution to the heat equation  
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Table 2: Result of action of Eqn. (2.21) on problem 4.2   

x  New Method 

 txU ,  

Schmidt Method 

 txU ,  

Exact Solution 

 txU ,  

Errors 

New Method Schmidt Method 

-1.00 0 0 0 0 0 

-0.75 0.368125 0.371031 0.368211 8.5 X E-5 2.8204X E -3 

-0.50 0.680200 0.685577 0.680364 1.6 X E-4 5.21266XE-3 

-0.25 0.888725 0.895749 0.888939 2.1 x E-4 6.81008XE-3 

0 0.9619500 0.969552 0.962181 2.3 X E-4 7.37081XE-3 

0.25 0.888725 0.895749 0.888939 2.1 x E-4 6.81008XE-3 

0.50 0.680200 0.685577 0.680364 1.6 X E-4 5.21266XE-3 

0.75 0.3681250 0.371031 0.368211 8.5 X E-4 2.8204X E -3 

1.00 0 0 0 0 0 

  

5. Conclusion 

A continuous interpolant is proposed for solving parabolic partial differential equation in one space variable without 

descretization. To check the numerical method, it is applied to solve two different test problems with known exact 

solutions. The numerical results confirm the validity of the new numerical scheme and suggested that it is an interesting and 

viable numerical method which does not involve the reduction of PDE to a system of ODEs.  
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