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Abstract 

The study has applied the chance-constrained stochastic programming technique to a 

building block industry problem, focusing more on when the resources are random 

quantities. The study is geared towards solving the problems of uncertainty 

surrounding block production, with a motive of maximizing profit. In applying the 

approach, some mathematical programming models were specially developed to 

determine expected profit for when some certain level of uncertainty are considered. 

Data collected from Dunu block manufacturing industry were the major source of 

information used in obtaining parameters for the probabilistic model after the study 

has carefully calculated the means, standard deviations and variances of the various 

weights of manufacturing materials before fitting them into the models.  
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1.1 Introduction 

The goal of mathematical programming is to identify an optimal solution to a given problem. Traditionally, it is assumed 

that all problem data are known precisely, which implies that an optimal solution for the problem is truly the best. 

Unfortunately, in most cases, problem data cannot be known exactly and instead the data can take a set of values or perhaps 

can be defined by a probability distribution. This is where stochastic programming comes in.  
 

Stochastic programming is an extension of mathematical programming in which the assumption that all data are known is 

relaxed; instead, a subset of the parameter values of the problem are characterized by probability distributions. The goal of 

a mathematical programming problem is to identify an optimal solution, where optimality is defined in terms of a cost 

function to be minimized or maximized. A kind of stochastic programming model is the chance-constrained stochastic 

programming [1] It is an operations research approach for optimization under uncertainty when some or all coefficients in a 

linear program are random variables distributed in accordance with some probability law. 
 

Chance-constrained programming is a branch of stochastic programming which are mostly seen as an unfriendly kind of 

programming which for their sometimes non-convexity, nonlinearity, discrete variables, and random variables. Charnes and 

Cooper, formulated the chance constraint in the earlier 1959, and presented the stochastic model as a single constraint 

(where 𝑚 = 1). The model formulated by Charnes and Cooper [2], had a fixed left-hand side. They went further to show 

that the problem can be reformulated as a deterministic nonlinear programming problem which was achieved by taking the 

inverse of the distribution of the random right hand side of the problem. 
 

Instead of requiring feasibility almost surely, a chance-constraint within a stochastic program must be satisfied at least with 

probability. Chance-constraint introduces dependency into this concept, requiring that a subset of constraints in the 

formulation are satisfied at least with probability. 
 

The mixture of these materials makes it almost impossible for the industry to determine the various profit she makes from 

each block product considering also the damages incurred after the consumption of some kilograms of cement and a truck 

of sand (sharpsand, stonedust, 3/8 stones) and as such making it difficult to determine the brand or product that accrues the 

largest percentage of the company’s annual profit. 
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Chance-constraints are used to model systems for which a certain quality of service is required, or for when a problem has extreme cases 

for which satisfying the chance-constraints for all possible parameter values is either too expensive or impossible.  
 

This study was undertaken to investigate the usefulness of considering the possibility of randomness in the quantity of raw material used 

in a manufacturing company. The study uses the building block manufacturing company as a case study, where we have taken the rigor 

to investigate and measure materials used for making a piece of block of various brands. It is believed that the study can provide the 

managements of building block industries with a suitable mathematical model capable of increasing productivity and optimality. 
 

1.2 Valuable Literatures 

Ahmed [3], developed convex relations of chance-constrained optimization problems in order to obtain lower bounds on the optimal 

value. Unlike existing statistical lower bounding techniques, the approach was designed to provide deterministic lower bounds. Wang et 

al. [4], applied chance-constrained programming on project scheduling problem in an uncertain environment where the duration time of 

each activity is an uncertain variable. Cooper et al. [5], developed models using chance-constrained programming formulations for 

treating congestion in data envelopment analysis (DEA). Gali et al. [6], applied chance-constrained programming to enhance decision-

making by Queensland barley growers. The model was designed to help Queensland barley growers make varietal and agronomic 

decisions in the face of changing product demands and volatile production conditions. Ruszczynski et al. [7], considered chance-

constrained stochastic programming problems allowing for the left-hand side of the constraints to be random.  
 

1.3 Aim of the Study 

The aim of this research work is to formulate a Chance-constrained stochastic programming model to assist in determining block 

products with optimal profit per truck of sand (sharpsand, stonedust, 3/8 stones). 
 

1.4 Motivation 

Some scholars are certainly already familiar with deterministic optimization methods such as the linear programming. The interest for 

carrying out this research work on chance-constrained programming can come from different sources. Our interest stems from our 

curiosity to apply this unique programming technique in a real life scenario like the block industry problem considered in this study. 

Technically, stochastic programs are much more complicated than the corresponding deterministic programs. Hence, at least from a 

practical point of view, there must be very good reasons to turn to the stochastic programming methods since almost all real world events 

are characterized with some form of uncertainty.  
 

Deterministic models may certainly produce good solutions for certain data sets, but there is generally no way you can conclude that they 

are good without comparing them to solutions of stochastic programs. In many cases, solutions to deterministic programs are very 

misleading, so the use of most suitable programming technique to solve the block industry problem created in this book has been 

necessitated. 

 

2.1 Methodology 

1. Method of Data Collection 

Data used in this study was collected from Dunu block manufacturing industry and comprises the various weights of material shipments 

made to the industry. The research was able to record about eight (8) weight of each delivery of the three major material used by the 

block industry (sharpsand, stonedust, and 3/8 stones). The deliveries were made by a kind of tipper truck called the 10 tyre truck which 

usually are able to carry more than 20 tons of sand. 

2. Derivation of the General Chance-Constrained Stochastic  

When only 𝒃𝒊 are random variables: let �̅�𝑖 and 𝑣𝑎𝑟{𝑏𝑖} denote the mean and variance of the normally distributed random variable �̅�𝑖. 
The constraints can be restated as: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑍 =∑𝑐𝑗𝑥𝑗

𝑛

𝑗=1

                                                                                                                          (1.1) 

𝑃 {∑𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖

𝑛

𝑗=1

} ≥ 𝛼𝑖                                                                                                                           (1.2) 

This is followed by subtracting 
�̅�𝑖

√𝑣𝑎𝑟{𝑏𝑖}
 from both sides of the LHS of (1.2). 

𝑃 {∑
𝑎𝑖𝑗𝑥𝑗 − �̅�𝑖

√𝑣𝑎𝑟{𝑏𝑖}

𝑛

𝑗=1

≤
𝑏𝑖 − �̅�𝑖

√𝑣𝑎𝑟{𝑏𝑖}
} ≥ 𝛼𝑖 , 𝑖 = 1,2… . .𝑚                                                               (1.3) 

Where 
𝑏𝑖−�̅�𝑖

√𝑣𝑎𝑟{𝑏𝑖}
 is a standard normal variable with zero mean and unit variance. The inequalities in equation (1.3) can be rewritten as: 

𝑃 {∑
𝑎𝑖𝑗𝑥𝑗 − �̅�𝑖

√𝑣𝑎𝑟{𝑏𝑖}

𝑛

𝑗=1

≤
𝑏𝑖 − �̅�𝑖

√𝑣𝑎𝑟{𝑏𝑖}
} ≤ 1 − 𝛼𝑖 , 𝑖 = 1,2… . .𝑚                                                       (1.4) 

If 𝐾𝑖 represents the standard normal variate at which; 
𝛷(𝐾𝑖) = 1 − 𝛼𝑖                                                                                                                                          (1.5) 
The constraints in equation (1.4) can be expressed as: 

𝛷{∑
𝑎𝑖𝑗𝑥𝑗 − �̅�𝑖

√𝑣𝑎𝑟{𝑏𝑖}

𝑛

𝑗=1

} ≤ 𝛷(𝐾𝑖), 𝑖 = 1,2… . .𝑚                                                                               (1.6) 
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From (1.6), we get the below (1.7) or (1.8): 

∑
𝑎𝑖𝑗𝑥𝑗 − �̅�𝑖

√𝑣𝑎𝑟{𝑏𝑖}
≤ 𝐾𝑖

𝑛

𝑗=1

, 𝑖 = 1,2… . .𝑚                                                                                               (1.7) 

∑𝑎𝑖𝑗𝑥𝑗 − �̅�𝑖 + 𝐾𝑖√𝑣𝑎𝑟{𝑏𝑖}

𝑛

𝑗=1

≤ 0, 𝑖 = 1,2… . .𝑚                                                                      (1.8) 

The Chance-Constrained model for when only 𝑏𝑖 are random variables is derived below as: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑧 =∑𝑐𝑗𝑥𝑗

𝑛

𝑗=1

                                                                               

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:                                                                                                     

∑𝑎𝑖𝑗𝑥𝑗 +𝐾𝑖√𝑣𝑎𝑟{𝑏𝑖}

𝑛

𝑗=1

≤ �̅�𝑖 , 𝑖 = 1,2,… .𝑚                                          

𝑤ℎ𝑒𝑟𝑒  𝑥𝑗 ≥ 0, 𝑎𝑛𝑑  𝑗 = 1,2,…… . 𝑛                                                     }
 
 
 

 
 
 

                                         (1.9) 

𝑧 is the objective function with the largest possible total farm gross margin. 

𝑐𝑗 is the profit from a unit of the 𝑗𝑡ℎ activity. 

𝑥𝑗 is the level of the 𝑖𝑡ℎ resourse required to produce one unit of the 𝑗𝑡ℎ activity. 

𝑎𝑖𝑗  is the quantity of 𝑖𝑡ℎ resource required to produce one unit of the 𝑗𝑡ℎ activity. 

𝑏�̅� is the mean level of the 𝑖𝑡ℎ resource or constraint. 

𝛼𝑖 is the minimum probability of meeting the 𝑖𝑡ℎ constraint. 

𝐾𝑖 is the value of the standard normal variate corresponding to the probability 𝛼𝑖 
 

3. Data and Some Derived Value Tables 

Table 1: Standard distribution of various weight of material (kg) 

Distribution Sharpsand Stonedust 3/8 stone 

Mean 19900 19060 19340 

Standard deviation 254.951 748.227 612.245 

Variance 65000 559843.75 374843.75 

 

Table 2: Costs of material (Sand and stone) 

 Sharpsand  

{19.9tons} 

Stonedust {19.06tons} 3/8stone {19.34tons} 

Cost per ton — ₦1800 ₦2100 

Transportation per truck — ₦18000 ₦18000 

Total cost ₦25000 ₦52300 ₦58600 

 

Table 3: Weight of cement in each block product in kg 

 SCB 9” SCB 6” SDB 9” SDB 6” SDB 4” CCB 9” CCB 6” 

Mean 1.227 1.024 1.252 1.056 0.88 1.19 0.96 

SD 0.052 0.027 0.044 0.038 0.022 0.030 0.016 

Table 4: Mean weight and standard deviation of sand materials in each block product. 

 SCB 9” SCB 6” SDB 9” SDB 6” SDB 4” CCB 9” CCB 6” 

Mean 22.56 14.08 30.87 20.16 14.12 35.33 23.38 

SD 0.20 0.34 0.27 0.20 0.34 0.24 0.23 
 

Table 5: A distribution showing cement consumption per truck. 

 Truck of Sharpsand Truck of Stonedust Truck of 3/8 stone 

Mean 1252.206 979.983 715.969 

Standard deviation 185.593 169.913 71.935 

Variance 34444.826 28870.519 5174.571 
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Table 6: Weights of Material and Number of blocks per truck 
Block 

Brands 

Required Cement for a Sand 

Truck (kg) 

Average  

Blocks per Truck 

Average Block 

Weights (kg) 

Average Blocks 

per Cement bag 

SCB 9” 1076.04 882 23.70 41 

SCB 6” 1446.9 1413 15.04 49 

SDB 9” 772.5 617 32.06 40 

SDB 6” 997.9 945 21.14 48 

SDB 4” 1188 1350 14.94 57 

CCB 9” 650.9 547 36.46 43 

CCB 6” 793.9 827 24.26 53 

 

Table 7: Material costs and profit per block brand 
 Cement 

Cost (₦) 
Cost of Sharpsand 

Stonedust & 3/8 Stone (₦) 
Labour 

Cost (₦) 
Average Production 

Cost (₦) 
Selling 

Price (₦) 
Average 

Profit (₦) 

SCB 9” 35.38 28.43 15 78.81 155 76.19 

SCB 6” 29.70 17.74 14 61.44 130 68.56 

SDB 9” 36.31 84.89 18 139.20 200 60.78 

SDB 6” 30.69 55.54 25 111.23 160 49.77 

SDB 4” 25.50 38.79 14 78.29 120 40.71 

CCB 9” 34.51 107.05 31 172.56 235 62.45 

CCB 6” 31.84 93.77 29 154.61 205 50.39 

 

3.1 Results 

Tableau One: When only the right-hand-sides are random. 

 

 

 

 

 

 

 

 

Where the profit is gotten from table 7. 

In generating a model for this scenario, a general model just like can be gotten for when 𝑎𝑖𝑗  are random has not been 

achieved here. This is because of the difficulty in finding a collective mean, standard deviation and variance for cement 

consumption per truck for all the products. So, the research has generated separate models that would optimize profit for the 

three block brands sharing the same production materials. We note that the sandcrete block brand has two product, the 

stanedust - three, and concrete block brand has two products. 

Now, we commence with the sandcrete model. 

 

3.1 Models for Sandcrete Blocks 

The objective function for this model is: 

𝑍 = 76.19𝑥1 + 68.56𝑥2 

Below, we derive the cement and sharpsand constraints using (1.8) the above equation. 

1. Cement constraint {kg} 

∑𝑎𝑖𝑗𝑥𝑗 ≤ �̅�𝑖 +𝐾𝑖√𝑣𝑎𝑟{𝑏𝑖}

2

𝑗=1

, 𝑖 = 1                                                                                                     (2.2) 

We expand to have: 𝑎11𝑥1 + 𝑎12𝑥2 ≤ �̅�1 −𝐾𝑖√𝑣𝑎𝑟{𝑏1}                                                       (2.3) 

Thus; 

1.227𝑥1 + 1.024𝑥2 ≤ 1252.21 − 𝐾𝑖√34444.83 

1.227𝑥1 + 1.024𝑥2 ≤ 1252.21 − 𝐾𝑖(185.593) 

2. Sharpsand constraint {kg} 

Considering equation (1.8) when 𝑗 = 1,2   𝑎𝑛𝑑  𝑖 = 2, then, 

𝑎21𝑥1 + 𝑎22𝑥2 ≤ �̅�2 + 𝐾𝑖√𝑣𝑎𝑟{𝑏2} 

Such that;  
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Block brands 

Materials required for block production 

Cement Sharpsand Stonedust 3/8 stone 

Mean 

�̅�1 

SD 

σ 

Mean 

�̅�2 

SD 

σ 

Mean 

�̅�3 

SD 

σ 

Mean 

�̅�4 

SD 

σ 

Sandcrete blocks 1252.21 185.59 19900 254.95     

Stonedust blocks 979.98 169.91   19060 748.28   

Concrete blocks 715.97 71.94     19340 612.25 
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22.56𝑥1 + 14.08𝑥2 ≤ 19990 − 𝐾𝑖(254.951) 
Hence, the model for sandcrete block becomes: 
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑍 = 76.19𝑥1 + 68.56𝑥2 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 
1.227𝑥1 + 1.024𝑥2 ≤ 1252.21 − 𝐾𝑖(185.593) 
22.56𝑥1 + 14.08𝑥2 ≤ 19990 − 𝐾𝑖(254.951) 

𝑤ℎ𝑒𝑟𝑒    𝑥1 ≥ 0, 𝑥2 ≥ 0 

For 𝐾𝑖 ,  we add the product collections from each brand and take the average: 
𝑆𝐶𝐵 9” = 882, 𝑆𝐶𝐵 6" = 1413 
882 + 1413

2
= 1148 𝑏𝑙𝑜𝑐𝑘𝑠 

15

1148
× 100% = 1.306, 𝑤ℎ𝑖𝑐ℎ 𝑖𝑚𝑝𝑙𝑖𝑒𝑠  (100 − 1.306)% 𝑠𝑢𝑐𝑐𝑒𝑠𝑠, 𝐾1 = 0.987. 

 

Table 9: Solution to the models provided using Lingo linear programming software: 
 15 block damages 

𝐾1 = 0.987 
10 block damages  𝐾2 =
0.991 

5 block damages  
𝐾3 = 0.996 

0 block damages  
𝐾4 = 1.000 

 𝑥1 812 773 829 790 

 𝑥2 71 117 49 95 

Profit (₦) 66379.04 66331.39 66275.95 66228.30 

  

4.1 Model for Stonedust blocks 

The objective function for this model is: 

𝑍 = 60.78𝑥3 + 49.77𝑥4 + 40.71𝑥5 

1. Cement constraint {kg} 

∑�̅�𝑖𝑗𝑥𝑗 ≤ �̅�𝑖 +𝐾𝑖√𝑣𝑎𝑟{𝑏𝑖}

5

𝑗=3

, 𝑖 = 1                                                                                                     (2.4) 

We expand to have: �̅�13𝑥3 + �̅�14𝑥4 + �̅�15𝑥5 ≤ �̅�1 + 𝐾𝑖√𝑣𝑎𝑟{𝑏1}                                            (2.5) 

Thus; 

1.252𝑥3 + 1.056𝑥4 + 0.878𝑥5 ≤ 979.98 + 𝐾𝑖√28870.52 

1.252𝑥3 + 1.056𝑥4 + 0.878𝑥5 ≤ 979.98 + 𝐾𝑖(169.913) 
2. Stonedust constraint {kg} 

Considering equation (2.4) when 𝑖 = 2 

To have, 

�̅�23𝑥3 + �̅�24𝑥4 + �̅�25𝑥5 ≤ �̅�2 + 𝐾𝑖√𝑣𝑎𝑟{𝑏2} 

30.87𝑥3 + 20.16𝑥4 + 14.12𝑥5 ≤ 19060 + 𝐾𝑖√559843.75 

30.87𝑥3 + 20.16𝑥4 + 14.12𝑥5 ≤ 19060 + 𝐾𝑖(748.227) 
Hence, the model for stonedust block becomes: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑍 = 60.78𝑥3 + 49.77𝑥4 + 40.71𝑥5 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 
1.252𝑥3 + 1.056𝑥4 + 0.878𝑥5 ≤ 979.98 + 𝐾𝑖(169.913) 
30.87𝑥3 + 20.16𝑥4 + 14.12𝑥5 ≤ 19060 + 𝐾𝑖(748.227) 
𝑤ℎ𝑒𝑟𝑒    𝑥3 ≥ 0, 𝑥4 ≥ 0, 𝑥5 ≥ 0 

For 𝐾𝑖 ,  we add the product collections from each brand and take the average: 
𝑆𝐷𝐵 9" = 617,   SDB 6" = 945, 𝑎𝑛𝑑  𝑆𝐷𝐵 4" = 1350 
617 + 945 + 1350

3
= 971 𝑏𝑙𝑜𝑐𝑘𝑠 

15

971
× 100% = 1.545, 𝑤ℎ𝑖𝑐ℎ 𝑖𝑚𝑝𝑙𝑖𝑒𝑠  (100 − 1.545)% 𝑠𝑢𝑐𝑐𝑒𝑠𝑠, 𝐾1 = 0.985. 

 

Table 10: Solution to the models provided using Lingo linear programming software: 
 15 block damages 

𝐾1 = 0.985 
10 block damages  𝐾2 =
0.990 

5 block damages  
𝐾3 = 0.995 

0 block damages  
𝐾4 = 1.000 

 𝑥3 466 480 409 411 

 𝑥4 79 35 278 274 

 𝑥5 166 198 6 7 

Profit (₦) 39013.17 38976.93 38939.34 38902.53 
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4.2 Mode for Concrete blocks 

The objective function for this model is 

𝑍 = 62.45𝑥6 + 50.39𝑥7 

1.  Cement constraint {kg} 

∑�̅�𝑖𝑗𝑥𝑗 ≤ �̅�𝑖 +𝐾𝑖√𝑣𝑎𝑟{𝑏𝑖}

7

𝑗=6

, 𝑖 = 1                                                                                     (2.6) 

We expand to have: �̅�16𝑥6 + �̅�17𝑥7 ≤ �̅�1 +𝐾𝑖√𝑣𝑎𝑟{𝑏1}                                        (2.7) 
Thus; 

1.19𝑥6 + 0.96𝑥7 ≤ 715.97 + 𝐾𝑖√5174.57 

1.19𝑥6 + 0.96𝑥7 ≤ 715.97 + 𝐾𝑖(71.935) 

2. 3/8 stone constraint {kg} 

Considering equation (2.6) when 𝑖 = 2 

�̅�26𝑥6 + �̅�27𝑥7 ≤ �̅�2 + 𝐾𝑖√𝑣𝑎𝑟{𝑏2} 

Hence, 

35.33𝑥6 + 23.38𝑥7 ≤ 19340 + 𝐾𝑖√374843.75 

35.33𝑥6 + 23.38𝑥7 ≤ 19340 + 𝐾𝑖(612.245) 
Hence, the model for concrete block becomes: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝒁 = 62.45𝑥6 + 50.39𝑥7 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 
1.19𝑥6 + 0.96𝑥7 ≤ 715.97 + 𝐾𝑖(71.935) 
35.33𝑥6 + 23.38𝑥7 ≤ 19340 + 𝐾𝑖(612.245) 

𝑤ℎ𝑒𝑟𝑒    𝑥6 ≥ 0, 𝑥7 ≥ 0 

For 𝐾𝑖 ,  we add the product collections from each brand and take the average: 
𝐶𝐶𝐵 9" = 547, 𝑎𝑛𝑑  𝐶𝐶𝐵 6" = 827 
547 + 827

2
= 687 𝑏𝑙𝑜𝑐𝑘𝑠 

15

687
× 100% = 2.18%, 𝑤ℎ𝑖𝑐ℎ 𝑖𝑚𝑝𝑙𝑖𝑒𝑠  (100 − 2.18)% 𝑠𝑢𝑐𝑐𝑒𝑠𝑠, 𝐾1 = 0.978. 

Table 11: Solution to the models provided using Lingo linear programming software: 

 15 block damages 

𝐾1 = 0.978 
10 block damages  𝐾2 =
0.985 

5 block damages  
𝐾3 = 0.993 

0 block damages  
𝐾4 = 1.000 

 𝑥6 23 25 35 37 

 𝑥7 644 641 628 625 

Profit (₦) 33886.22 33859.96 33829.41 33803.15 
 

4.3 Summary 

Chance-constrained stochastic programming technique is a very beautiful mathematical programming approach just as we have seen in 

this study. The technique allows for consideration of uncertainties which can occur in a real world. The block industry problems 

considered in this work is a unique case which at the best of our knowledge has not been considered previously. The results generated for 

the problems for when only the right-hand-side of the models are random, represents the beauty of the study considering that it dealt only 

with the resource variables. This is adequate for industries in large scale manufacturing and provides them with an insight of expected 

profit when multiple levels of damages are incurred during production. 
 

4.4 Conclusion 

The study has obtained numerous results for each probability level as obtained from Dunu block industry and the chance-constrained 

stochastic models generated for the problems have been solved using the Lingo solver with results displayed in the study. The various 

weights of materials obtained from the industry have been carefully fitted into the models as required by the procedures for generating a 

stochastic programming models. The study has noticed that the model tends to give more priority to one of the blocks from each brand 

which isn’t appropriate for business especially minding the fact that companies would want to market all products that are in high 

demand. But, this will provide a good guide for the industry in planning and realizing products of better profit. 
 

Future work: The results of the study can further be enhanced by applying ranges to the level of changes that can be made to the 

coefficients of the linear models. This can be done by the application of the parametric programming technique. 
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