NOTES ON SEMINORMS AND CONTINUITY

Sunday Oluyemi

Former ARMTI Quarters, Off Basin Road, Basin Area, Ilorin, Kwara State. NIGERIA

Abstract

We establish three *Notes* the proofs (and precise statements of some) of which are not easily located in the literature.

Keywords: seminorm, (τ, τ') -continuous, the topology τ_p of the seminorm p.

1 LANGUAGE, NOTATION, SOME RECAP Our language and notation shall be pretty standard, as found, for example, in $[1-5] \mathbb{N} = \{1, 2, \dots\}$ the *natural numbers*, \mathbb{R} -the *real numbers*, \mathbb{C} - the *complex numbers*, while we denote by K either of \mathbb{R} and \mathbb{C} . We indicate by /// the end or absence of proof.

Our vector space $(V, +, \theta)_{K} = V_{K}$, is over the field K; it is an additive Abelina group with *ground set V* and additive identity θ , called its *zero*.

A topological space (V_K , τ), with ground set a vector space V_K , and a topology τ *compatible* with the *addition* and *external multiplication* (*scalar multiplication*) of V_K , is called a *topological vector space*. We assume familiarity with some elements of General Topology (**GT**) and Topological Vector Spaces (**TVS**), and so freely employ results on (*continuity, net convergence, filter of neighbourhoods*, N₀(τ), seminorms, etc, etc) from **GT** and **TVS**. Of course, more than 75% of the subject of **TVS is** *undiluted, naked, unadulterated* **GT**.

If on the vector space $V_{\rm K}$, $p : V_{\rm K} \to \mathbb{R}$ is a seminorm, p induces on $V_{\rm K}$ the pseudometric

 $dp: V_{\mathrm{K}} \ge V_{\mathrm{K}} \to \mathbb{R}$

 $(v, w) \mapsto p(v - w)$

The topology τ_{dp} , of this pseudometric is called the *topology of p*, and *here* denoted τ_p .

FACT 1 (TVS) [1] τ_p is a vector topology. ///

The *modulus* / *absolute value*, $| \cdot |$, on $K = \mathfrak{C} / \mathbb{R}$ is a seminorm (indeed, a norm); its topology $\tau_K = \tau_{\mathbb{C}}/\tau_{\mathbb{R}}$ is called the *usual topology of* $K = \mathfrak{C} / \mathbb{R}$. By FACT 1, above $(K, +, 0)_{K}$, $\tau_{| \cdot |} = (K, \tau_{| \cdot |})$ is a topological vector space. Observe that the zero of this space is 0; don't mix it up with the notation θ . *FACT* : $\tau_K = \tau_{| \cdot |}$. In what follows, the topology on K shall always be τ_K . Let *I*, *X* be non-empty sets. If *I* is directed by \leq , we *here write* $(x_i)_{i \in (I, \leq)}$ for a *net in X based on the directed set* (I, \leq) . If (X, τ) is a topological space, $x_0 \in X$, and a net $(x_i)_{i \in (I, \leq)}$ in *X* [| we also say *in* (X, τ) |] converges [|also say τ -converges|] to x_0 , we may write

 $x_i \xrightarrow{\tau} x_0$

Example If *p* is a seminorm on the vector space V_K , then τ_p is a vector topology on V_K and (V_K, τ_p) is a topological vector space. If $v_0 \in V_K$ and a net $(x_i)_{i \in (I, \leq)}$ in V_K τ_p -converges to v_0 , we may write $x_i \xrightarrow{\tau_p} v_0$. A popular instance is

$$x_i \xrightarrow{\tau_p} \theta$$

where θ is the zero of V_{K} . If $((V, +, \theta)_{K}, \tau) = (V_{K}, \tau)$ is a topological vector space a net $(x_{i})_{i \in (I, \leq)}$ in (V_{K}, τ) converging to θ is called a *null net* (or, a τ -*null net*) and, of course, we write

 $x_i \xrightarrow{\tau} \theta$.

If (X, τ) is a topological space and $x_0 \in X$, we denote by $N_{x0}(\tau)$ the filter of neighbourhoods of x_0 . *Definition* : (**GT**) For topological spaces (X, τ) and (X', τ') , $x_0 \in X$, and $f : (X, \tau) \to (X', \tau')$ a map [|function|] we say that f is *continuous at* x_0 [|f is (τ, τ') -*continuous at* x_0] provided for every $W \in N_{f(x0)}(\tau')$ there exists $U \in N_{x0}(\tau)$ such that $f(U) \subseteq W$.

Corresponding Author: Sunday O., Email: soluyemi19@yahoo.com, Tel: +2348160865176

Journal of the Nigerian Association of Mathematical Physics Volume 60, (April - June 2021 Issue), 5-8

Sunday

J. of NAMP

[| Equivalently: For every $W \in N_{f(x0)}(\tau) f^{-1}(W) \in N_{x0}(\tau)$]. If f is continuous at every $x \in X$, then f is simply called a *continuous map* [| a *continuous function* |].

FACT 2 (GT) Let (X, τ) and (X', τ') be topological spaces and $x_0 \in X$. A function $f : (X, \tau) \to (X', \tau')$ is continuous at x_0 if and only if for every net $(x_i)_{i \in (l, \leq)}$ in X, τ -converging to x_0 , the net $(f(x_i))_{i \in (l, \leq)}$ τ' -converges to $f(x_0)$ [] if and only if $x_i \xrightarrow{\tau} x_0 \Rightarrow f(x_i) \xrightarrow{\tau'} f(x_0)$]. ///

FACT 3 (GT) Let (X, τ) , (X', τ') and (X'', τ'') be topological spaces, and

$$(X, \tau) \xrightarrow{f} (X', \tau'),$$

 $(X', \tau') \xrightarrow{g} (X'', \tau'')$

continuous maps. Then, their composition

 $(X, \tau) \xrightarrow{g \circ f} (X'', \tau'')$ is also continuous. ///

FACT 4 If $(V, +, \theta)_{(K,+,\cdot,0,1)} = V_K$ is a vector space, and p a seminorm on V_K , then $p(\theta) = 0$. ///

FACT 5 Let $(V, +, \theta)_{K}$ and $(V', +, \theta')_{K}$ be vector spaces, and $f : (V, +, \theta)_{K} \rightarrow (V', +, \theta')_{K}$ a linear map. Then, $f(\theta) = \theta'$. /// Let *X* be a non-empty set and Φ a collection of topologies on *X*. The coarset of all topologies on *X* finer than each member of Φ . Is called the *supremum* of Φ and denoted $\lor \Phi$. We have

FACT 6 (GT) Let (X, τ) be a topological space, X' a non-empty set, Φ a collection of topologies on X' and $f: (X, \tau) \to X'$ ' a map. Then, f is $(\tau, \sqrt{\Phi})$ -continuous if and only if f is (τ, τ') -continuous for each $\tau' \in \Phi$. ///

FACT 7 (TVS) If V_K is a vector space, and Φ is a collection of vector topologies on V_K , then the supremum $\nabla \Phi$ is a vector topology. ///

Let V_K be a vector space, and P a collection of seminorms on V_K . By FACT 1, τ_p is a vector topology for each $p \in P$. Hence, by FACT 7, $\bigvee_{p \in P} \tau_p = \bigvee \{\tau_p : p \in P\}$, *here* denoted τ_p , is a vector topology.

The results, FACT1 – FACT 7 recalled for ease of reference may be used in what follows with or without citation.

2 CONTINUOUS SEMINORMS We curl up four results from GT and TVS for ease of reference.

FACT 1 (TVS) Let $((V, +, \theta)_K, \tau) = (V_K, \tau)$ be a topological vector space and $p : (V_K, \tau) \to (\mathbb{R}, \tau_{\mathbb{R}})$ a seminorm. p is $(\tau, \tau_{\mathbb{R}})$ -continuous if and only if it is $(\tau, \tau_{\mathbb{R}})$ -continuous at θ . ///

FACT 2 (**GT**) For nets $(x_i)_{i \in (I, \leq)}$ and $(y_i)_{i \in (I, \leq)}$ in \mathbb{R} based on same directed set (I, \leq) , if

(i) $x_i \xrightarrow{\tau_R} 0$ (ii) $0 \le y_i \le x_i$ for all $i \in I$, then $y_i \xrightarrow{\tau_R} 0$ also. ///

FACT 3 (**GT**) (*Net Convergence in* (\mathbb{R} , $\tau_{\mathbb{R}}$)) For nets $(x_i)_{i \in (I, \leq)}$ and $(y_i)_{i \in (I, \leq)}$ in (\mathbb{R} , $\tau_{\mathbb{R}}$) based on same directed set (I, \leq), and $x, y \in \mathbb{R}$,

 $\begin{array}{ccc} x_i & \xrightarrow{\tau_{\mathrm{R}}} & x \\ \text{and} & & \\ y_i & \xrightarrow{\tau_{\mathrm{R}}} & y \\ & & & \end{array}$

jointly imply

 $x_i + y_i \xrightarrow{\tau_R} x + y_i ///$

Let V_K be a vector space, $\alpha > 0$, p a seminorm on V_K , and $P = \{p_1, p_2, ..., p_n\} (n \in \mathbb{N})$ a finite collection of seminorms on V_K . Define, as follows, αp , P_{sum} and P_{max} .

 $\alpha_P(\mathbf{v}) = \alpha(p(\mathbf{v}))$ for $\mathbf{v} \in V_{\mathrm{K}}$, and *pa* seminorm

 $P_{\text{sum}}(v) = p_1(v) + p_2(v) + \dots + p_n(v)$ for $v \in V_K$ and

 $P_{\max}(v) = \max p_i(v) \text{ for } v \in V_K.$

Journal of the Nigerian Association of Mathematical Physics Volume 60, (April - June 2021 Issue), 5-8

Sunday

 $\dots (\Delta^1)$

 (Δ^2)

 \dots (Δ^3)

FACT 4 (TVS) [2] Let $V_{\rm K}$ be a vector space, $\alpha > 0$, p a seminorm on $V_{\rm K}$, and $P = \{p_1, p_2, \dots, p_n\} (n \in \mathbb{N})$ a finite collection of semi- norms on $V_{\rm K}$. Then, αp , $P_{\rm sum}$ and $P_{\rm max}$ are also seminorms on $V_{\rm K}$. ///

We now state and establish our only theorem of this section.

Note 1 5 Let $((V, +, \theta)_K, \tau) = (V_K, \tau)$ be a topological vector space.

(i) If p is a continous seminorm on (V_{K}, τ) and $\alpha > 0$, then αp is also a continous seminorm.

(ii) If p, q are seminorms on (V_{K}, τ) , $p \le q$, and q continuous, so is p.

(iii) if $P = \{p_1, p_2, \dots, p_n\}$ $(n \in \mathbb{N}, n \ge 2)$ is a finite collection of continuous seminorms on $(V_{\mathcal{K}}, \tau)$, then P_{sum} is also continuous.

(iv) If $P = \{p_1, p_2, \dots, p_n\}$ $(n \in \mathbb{N}, n \ge 2)$ is a finite collection of continuous seminorms on (V_K, τ) , P_{\max} is also continuous.

Proof (i): That αp is a seminorm is one of the claims of FACT 4. It therefore suffices by FACT 1 to show that αp is continuous at θ . So, suppose $(x_i)_{i \in (I, \leq)}$ is a net in (V_K, τ) and that

$$x_i \xrightarrow{\tau} \theta$$

By the assumed continuity of *p*, from (Δ^1) and 1.2 follows that

 $p(x_i) \xrightarrow{\tau_{\rm R}} p(\theta) = 0$

And from arguments in Elementary Real Analysis, (Δ^2) gives

 $(\alpha p)(x_i) = \alpha p(x_i) \xrightarrow{\tau_{\mathbb{R}}} 0 = \alpha \cdot 0 = \alpha \cdot p(\theta) = (\alpha p)(\theta)$

(ii): By FACT 1, it suffices to show that p is continuous at θ . So, let $(x_i)_{i \in (I, \leq)}$ be a null net in (V_K, τ) . By the continuity of q, it follows from 1.2 that

 $q(x_i) \xrightarrow{\tau_R} q(\theta) = 0$ The hypothesis $p \le q$, (Δ^3) and FACT 2 give

 $p(x_i) \xrightarrow{\tau_{\mathsf{R}}} 0 = p(\theta).$

iii: It suffices to establish the claim here for n = 2. So, suppose $P = \{p_1, p_2\}$. By FACT 4, $p_1 + p_2$ is a seminorm on V_{K} . Let $(x_i)_{i \in (I, \leq)}$ be a null net in (V_K, τ) . By hypothesis, p_1 and p_2 are continuous, and so continuous at θ . Hence,

 $p_1(x_i) \xrightarrow{\tau_{\mathbb{R}}} p_1(\theta) = 0$ and

 $p_2(x_i) \xrightarrow{\tau_R} p_2(\theta) = 0$ By \FACT 3, therefore,

 $(p_1 + p_2)(x_i) = p_1(x_i) + p_2(x_i) \xrightarrow{\tau_R} 0 + 0 = 0$

 $= p_1(\theta) + p_2(\theta) = (p_1 + p_2)(\theta).$

(iv): Clearly, $P_{\text{max}} \leq P_{\text{sum}}$, and so the claim here follows from (ii) and (iii). ///

3 LINEAR MAP/FUNCTIONAL AND CONTINUITY Let V_K be a vector space and p a seminorm on V_K . Recall that in Section 1 we denote by τ_p the pseudometric topology of the pseudometric

 $dp: V_{K_X}V_K \to \mathbb{R}$ (v, w) $\mapsto P(v-w)$ (Δ) And called it the topology of p. We have from (Δ) and net convergence in **GT**,

FACT 1 If $p: V_{K} \rightarrow ((\mathbb{R}, +, \cdot, 0, 1)), \tau_{\mathbb{R}})$ is a seminorm on the vector space $V_{K}, x_{0} \in V_{K}$, and $(x_{i})_{i \in (I, \leq)}$ is a net in V_{K} , then,

 $x_i \xrightarrow{\tau_p} x_0$

if and only if

 $p(x_i - x_0) \xrightarrow{\tau_R} 0 / / /$

Note 2 2 Let V_K and $V_{K'}$ be vector spaces, p a seminorm on $V_{K'}$ and $f: V_K \to V_{K'}$ a linear map. Then, the composition p of $f: V_K \to \mathbb{R}$ is a seminorm on V_K . **Proof** *Positivity* For $v \in V_K$,

 $(p \circ f)(v) = p(f(v)) \ge 0$ by the positivity of *p*.

Journal of the Nigerian Association of Mathematical Physics Volume 60, (April - June 2021 Issue), 5-8

Sunday

Absolute Homogeneity For $v \in V_{K}$, $(p \circ f)(\lambda v) = p(f(\lambda v)) = p(\lambda f(v))$ $= |\lambda| p(f(v)) = |\lambda| (p \circ f)(v).$ $\backslash Triangle Inequality Let v, w \in V_{K}.$ Then, $(p \circ f)(v + w) = p(f(v + w)) = p(f(v) + (f(w)))$ which by the Triangle Inequality applied to p. $\leq p(f(v)) + p(f(w)) = (p \circ f)(v) + (p \circ f)(w). ///$

FACT 3 (TVS) Let $((V, +, \theta)_K, \tau) = (V_K, \tau)$ and $((V', +, \theta')_K, \tau') = (V_K', \tau')$ be topological vector spaces and $f : (V_K, \tau) \rightarrow (V_K', \tau')$ a linear map. Then, f is continuous if and only if it is continuous at θ . ///

FACT 4 (TVS) Let W_K be a vector space, and p a seminorm on W_K . Then, $p : (W_K, \tau_p) \to (\mathbb{R}, \tau_{\mathbb{R}})$ is continuous. /// Next, we have

Note 3 5 Let $((V, +, \theta)_{K}, \tau) = (V_{K}, \tau)$ be a topological vector space, *p* a smeinorm on a vector space $(V', +, \theta')_{K} = V_{K'}$, and $f : (V_{K}, \tau) \rightarrow (V_{K'}, \tau_p)$ a linear map. Then, *f* is continuous if and only if the seminorm *p* o *f* is continuous. **Proof** \Rightarrow : *Hypothesis f* is continuous.

By FACT 4, *p* is $(\tau_p, \tau_{\mathbb{R}})$ continuous. By 1.3, therefore, *p* o *f* is contin-uous.

 \Leftarrow : *Hypothesis* The seminorm (*Note* 2) $p \circ f$ is continuous.

We want to show that the linear map f is (τ, τ_p) -continuous. By FACT 3, it suffices to show that f is (τ, τ_p) -continuous at θ . So (1.2), let $(x_i)_{i \in (I, \leq)}$ be a net in (V_K, τ) converging to θ . That is, let

$$x_i \xrightarrow{\tau} \theta \qquad \dots (\Delta^1)$$

By the *Hypothesis* and 2.1, we have from (Δ^1) ,

$$(p \circ f)(x_i) \xrightarrow{\tau_R} (p \circ f)(\theta) = P(f(\theta)) = p(\theta') = 0.$$

That is,

$$p(f(x_i)) \xrightarrow{\tau_R} 0.$$

That is,

$$p(f(x_i) - \theta') \xrightarrow{\tau_R} 0.$$

That is,

$$p(f(x_i) - f(\theta)) \xrightarrow{\tau_R} 0.$$

But by FACT 1, (Δ^2) means

 $f(x_i) \xrightarrow{\tau_p} f(\theta)$...(Δ^3) Clearly, (Λ^1), (Λ^3) and 1.2, jointly say that f is (τ , τ_p)-continuous at θ . ///

COROLLARY 6 [5] Let $((V, +, \theta)_{K}, \tau) = (V_{K}, \tau)$ be a topological vector space, *P* a collection of seminorms on a vector space $(V', +, \theta')_{K} = V_{K'}$, and $f : (V_{K}, \tau) \rightarrow (V_{K'}, \tau_{P})$ a linear map. Then, *f* is continuous if and only if the seminorms $p \circ f : (V_{K}, \tau) \rightarrow (\mathbb{R}, \tau_{\mathbb{R}})$,

 $p \in P$ are each continuous.

Proof : $\tau_P = \lor \{\tau_p : p \in P\}$. The claim is immediate from *Note* **3** above and 1.6. ///

COROLLARY 7 Let $f : (V_K, \tau) \to (K_K, \tau_K)$ be a linear functional on the topological vector space (V_K, τ) . Then, *f* is continuous if and only if |f| is continuous. ///

REFERENCE

- [1] Sunday Oluyemi, The *pseudometric topology of a smeinorm is a vector topology*, Transactions of NAMP, Volume 12 (July September, 2020Issue). Pp. 1 10.
- [2] Sunday Oluyemi, *Some short notes on the topology of the seminorm*, Transactions of NAMP, Volume 12 (July September 2020 Issue) Pp. 11 16.
- [3] John Horvath, *Topological Vector Spaces and Distributions* I, Addison-Wesley 1966.
- [4] Albert Wilansky, *Topology for Analysis*, Ginn, 1970.
- [5] Albert Wilansky, *Modern Mehtods in Topological Vector Spaces*, McGrawHill 1976.

Journal of the Nigerian Association of Mathematical Physics Volume 60, (April - June 2021 Issue), 5-8