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Abstract 

We establish three Notes the proofs (and precise statements of some) of 

which are not easily located in the literature.  
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1  LANGUAGE, NOTATION, SOME RECAP  Our language and notation shall be pretty standard, as found, for 

example, in [1 – 5] ℕ = {1, 2, ……..}- the natural numbers, ℝ-the real numbers, ℭ- the complex numbers, while we denote 

by K either of ℝ and ℭ. We indicate by /// the end or absence of proof. 

Our vector space (V, +, )K = VK, is over the field K ; it is an additive Abelina group with ground set V and additive identity 

, called its zero. 

A topological space (VK, ), with ground set a vector space VK, and a topology  compatible  with the addition and external 

multiplication (scalar multiplication) of VK, is called a topological vector space. We assume familiarity with some elements 

of General Topology (GT) and Topological Vector Spaces (TVS), and so freely employ results on (continuity, net 

convergence, filter of neighbourhoods, N(), seminorms, etc, etc) from GT and TVS. Of course, more than 75% of the 

subject of TVS is undiluted, naked, unadulterated GT. 

If on the vector space VK,  p  : VK  ℝ is a seminorm, p induces on VK the pseudometric  

dp : VK x VK  ℝ       

(v, w)  ↦ p(v – w)  

The topology dp, of this pseudometric is called the topology of p, and here denoted p. 

FACT  1 (TVS) [1] p is a vector topology. ///  

The modulus / absolute value, |  |, on K = ℭ / ℝ  is a seminorm (indeed, a norm); its topology K = ℭ/ℝ is called the usual 

topology of  K = ℭ / ℝ. By FACT 1, above (K, +, 0))K, |  | = (K, |  |) is a topological vector space. Observe that the zero of 

this space is 0; don’t mix it up with the notation . FACT : K = |  |.  In what follows, the topology on K shall always be K. 

Let I, X  be non-empty sets. If I is directed by , we here write (xi)i(I, ) for a net in X based on the directed set (I, ). If (X, 

) is a topological space, x0  X, and a net (xi)i(I, )  in X [| we also say in (X, )|] converges [|also say -converges|] to x0, we 

may write  

xi 
τ

 x0 

Example  If  p is a seminorm on the vector space VK, then p is a vector topology on  VK  and (VK, p) is a topological vector 

space. If v0  VK and a net (xi)i(I, )  in VK  p-converges to  v0, we may write  xi 
pτ

 v0. A popular instance is  

xi 
pτ

  

where  is the zero of VK. If ((V, +, )K, ) = (VK, ) is a topological vector space a net (xi)i(I, ) in (VK, ) converging to  is 

called a null net (or, a -null net) and, of course, we write  

xi 
τ

 . 

If (X, ) is a topological space and x0  X, we denote by Nx0() the filter of neighbourhoods of x0. Definition : (GT) For 

topological spaces (X, ) and (X , ), x0  X, and  f  : (X, )  (X , ) a map [|function|] we say that  f  is continuous at x0 

[| f is (, )-continuous at x0|] provided for every W  Nf (x0)( ) there exists U  Nx0() such that  

f(U) W. 
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[| Equivalently: For every W  Nf (x0) () f – 1(W)  Nx0()|]. If  f  is continuous at every x  X, then  f is simply called a 

continuous map [| a continuous function |].  
 

FACT 2 (GT)  Let (X, ) and (X , ) be topological spaces and x0  X. A function f  :  (X, )  (X , ) is continuous at x0 

if and only if for every net (xi)i(I, ) in X, -converging to x0, the net (f (xi))i(I,) -converges to f(x0) [| if and only if 

xi 
τ

 x0   f (xi) 
τ

 f(x0)|]. /// 
 

FACT 3 (GT)  Let (X, ) ,(X , ) and (X , ) be topological spaces, and  

(X, ) 
f

(X , ), 

(X , ) 
g

(X , ) 

continuous maps. Then, their composition  

(X, ) 
fg 

(X , ) 

is also continuous. /// 
 

FACT 4  If (V, +, )(K,+, , 0, 1) = VK is a vector space, and p a seminorm on VK, then p() = 0. /// 

FACT 5 Let (V, +, )K and (V , +, )K be vector spaces, and  f  : (V, +, )K  (V , +, )K a linear map. Then, f () = . /// 

Let  X be a non-empty set and  a collection of topologies on X. The coarset of all topologies on X finer than each member 

of . Is called the supremum of  and denoted . We have  

FACT 6 (GT)  Let  (X, ) be a topological space, X  a non-empty set,  a collection of topologies on X  and f : (X, )  X 

 a map. Then,  f  is (, )-continuous if and only if  f  is (,)-continuous for each   . /// 

FACT 7 (TVS)  If VK is a vector space, and  is a collection of vector topologies on VK, then the supremum  is a vector 

topology. /// 

Let VK be a vector space, and P a collection of seminorms on VK. By FACT 1, p is a vector topology for each p  P. Hence, 

by FACT 7, 
p

Pp




  = {p : p  P}, here denoted p, is a vector topology. 

The results, FACT1 – FACT 7 recalled for ease of reference may be used in what follows with or without citation.  

 

2   CONTINUOUS SEMINORMS We curl up four results from GT and TVS for ease of reference.  

FACT 1 (TVS) Let ((V, +, )K, ) = (VK, ) be a topological vector space and p  : (VK, )  (ℝ, ℝ) a seminorm. p is (, ℝ)-

contin- uous if and only if it is (, ℝ)-continuous at . /// 

FACT 2 (GT) For nets (xi)i(I, ) and (yi)i(I, ) in ℝ based on same directed set  (I, ), if  

(i)    xi  Rτ  0 

(ii)  0  yi  xi for all i  I, 

then 

yi  Rτ  0 

also. ///   

 

FACT 3 (GT) (Net Convergence in (ℝ, ℝ)) For nets (xi)i(I, ) and (yi)i(I, ) in (ℝ, ℝ) based on same directed set (I, ), and 

x, y  ℝ, 

xi  Rτ  x 

and 

yi  Rτ  y 

jointly imply  

xi + yi  Rτ

 x + y. /// 

Let VK be a vector space,   0, p a seminorm on VK, and P = {p1, p2, …., pn}(n  ℕ) a finite collection of seminorms on 

VK. Define, as follows, p, Psum and Pmax. 

P() = (p()) for   VK, and pa seminorm  
Psum() = p1() + p2() + …… + pn() for   VK  

and 

Pmax() = 
ni1

max pi() for   VK. 
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FACT 4 (TVS) [2] Let VK be a vector space,   0, p a seminorm on VK, and P ={p1, p2, ….,pn}(n  ℕ) a finite collection 

of semi- norms on VK. Then, p, Psum and Pmax are also seminorms on VK. /// 

We now state and establish our only theorem of this section.  

Note 1  5  Let   ((V, +, )K, ) = (VK, ) be a topological vector space. 

(i)  If p is a continous seminorm on (VK, ) and   0, then p  is also a continous seminorm. 

(ii)  If p, q are seminorms on  (VK, ), p  q, and q continuous, so is p. 

(iii) if P = {p1, p2, ….., pn}(n  ℕ, n  2) is a finite collection of continuous  seminorms on (VK, ), then Psum is also 

continuous. 

(iv) If P ={p1, p2, ….., pn}(n  ℕ, n  2) is a finite collection of continuous seminorms on  (VK, ), Pmax is also continuous.  

Proof (i): That p is a seminorm is one of the claims of FACT 4. It therefore suffices by FACT 1 to show that p is 

continuous at . So, suppose (xi)i(I, )  is a net in (VK, ) and that  

xi 
τ

        …..(1) 

By the assumed continuity of p, from (1) and 1.2 follows that  

p(xi)  Rτ

 p() = 0       …..(
2) 

And from arguments in Elementary Real Analysis, (2) gives 

(p)(xi) = p(xi)   Rτ

 0 = 0 = p() = (p)() 

(ii): By FACT 1, it suffices to show that p is continuous at . So, let (xi)i(I, )  be a null net in (VK, ). By the continuity of q, 

it follows from 1.2 that   

q(xi)  Rτ

q() = 0       …..(
3) 

The hypothesis p  q, (3) and FACT 2 give  

p(xi)  Rτ

0 = p().  

iii:  It suffices to establish the claim here for n = 2. So, suppose P = {p1, p2}. By FACT 4,  p1 + p2 is a seminorm on VK. Let 

(xi)i(I, ) be a null net in  (VK, ). By hypothesis, p1 and p2 are continuous, and so continuous at . Hence, 

p1(xi)  Rτ

p1() = 0  

and  

p2(xi)  Rτ

p2() = 0  

By \FACT 3, therefore,  

(p1 + p2)(xi) = p1(xi) +  p2(xi)   Rτ

 0 + 0 = 0  

= p1() + p2() = (p1 + p2) (). 

(iv): Clearly, Pmax  Psum, and so the claim here follows from (ii) and (iii). /// 

 

3  LINEAR MAP/FUNCTIONAL AND CONTINUITY   Let VK  be a vector space and p a seminorm on VK. Recall that 

in Section 1 we denote by p the pseudometric topology of the pseudometric  

dp :  VKxVK  ℝ  

(v, w)   ↦ P(v – w)      ……  ()  

And called it the topology of p. We have from () and net convergence in GT, 

FACT 1  If p : VK  ((ℝ, +, , 0, 1),), ℝ) is a seminorm on the vector space VK, x0  VK, and (xi)i(I, ) is a net in VK, then,  

xi 
pτ

x0 

if and only if  

p(xi  –  x0)  Rτ

0 /// 

Note 2   2  Let VK  and VK be vector spaces, p a seminorm on VK and  f : VK   VK a linear map. Then,  the composition p 

o f  :  VK   ℝ is  a seminorm on VK. 

Proof Positivity  For v  VK, 

(p o f )(v) = p( f (v))  0 

by the positivity of p. 
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Absolute Homogeneity For v  VK, 

(p o f )(v) = p( f (v)) = p ( f (v))  

= |  | p( f (v)) = |  | (p of )(v). 

\Triangle Inequality  Let v, w  VK. Then,  

(p o f )(v + w) = p( f (v + w)) = p( f (v) + ( f (w)) 

which by the Triangle Inequality applied to p. 

 p( f (v)) + p( f (w)) = (p o f )(v) +  (p o f )(w). /// 
 

FACT 3 (TVS)  Let ((V, +, )K, ) = (VK, ) and ((V , +, )K, ) = (VK , ) be topological vector spaces and  f  : (VK, )  

(VK , ) a linear map. Then,  f is continuous  if and only if it is continuous at . ///  

FACT 4 (TVS)  Let WK be a vector space, and p a seminorm on WK. Then, p  : (WK, p)  (ℝ, ℝ) is continuous. ///  

Next, we have  

Note 3  5  Let ((V, +, )K, ) = (VK, ) be a topological vector space, p a smeinorm  on a vector space (V , +, )K = VK, and  

f  : (VK, )  (VK , p) a linear map. Then,  f is continuous if and only if the seminorm p o f  is continuous.  

Proof : Hypothesis  f  is continuous.  

By FACT 4, p is (p, ℝ) continuous. By 1.3, therefore, p o f  is contin- uous.  

: Hypothesis The seminorm (Note 2) p o f  is continuous.  

We want to show that the linear map  f  is (, p)-continuous. By FACT 3, it suffices to show that  f  is (, p)-continuous at 

. So (1.2), let  (xi)i(I, ) be a net in (VK, ) converging to . That is, let  

xi 
τ

       ….(1) 

By the Hypothesis and 2.1, we have from (1), 

(p o f )(xi)  Rτ

(p o f )() = p( f ()) = p() = 0. 

That is,  

p ( f(xi))  Rτ

0. 

That is,  

p( f(xi)  – )  Rτ

0. 

That is,  

p( f(xi)  – f ())  Rτ

0     …(2) 

But by FACT 1, (2) means  

f(xi) 
pτ

 f ()     …(3) 

Clearly, (1), (3) and 1.2, jointly say that  f  is (, p)-continuous at . /// 

COROLLARY 6 [5] Let  ((V, +, )K, ) = (VK, ) be a topological vector space, P a collection of seminorms on a vector 

space  (V , +, )K = VK , and  f  : (VK, )  (VK ,P) a linear map. Then,  f is continuous if and only if the seminorms  

p o f  : (VK, )  (ℝ, ℝ), 

p  P are each continuous.  
 

Proof : P  = {p : p  P }. The claim is immediate from Note 3 above and 1.6. ///  

COROLLARY 7  Let  f  : (VK, )  (KK, K) be a linear functional on the topological vector space (VK, ). Then, f is 

continuous if and only if | f | is continuous. /// 
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