NOTES ON SEMINORMS AND CONTINUITY

Sunday Oluyemi

Former ARMTI Quarters, Off Basin Road, Basin Area, Ilorin, Kwara State. NIGERIA

Abstract
 We establish three Notes the proofs (and precise statements of some) of which are not easily located in the literature.

Keywords: seminorm, $\left(\tau, \tau^{\prime}\right)$-continuous, the topology τ_{p} of the seminorm p.

1 LANGUAGE, NOTATION, SOME RECAP Our language and notation shall be pretty standard, as found, for

 example, in $[1-5] \mathbb{N}=\{1,2, \ldots \ldots .$.$\} - the natural numbers, \mathbb{R}$-the real numbers, \mathfrak{C} - the complex numbers, while we denote by K either of \mathbb{R} and \mathfrak{C}. We indicate by $/ / /$ the end or absence of proof.Our vector space $(V,+, \theta)_{K}=V_{K}$, is over the field K ; it is an additive Abelina group with ground set V and additive identity θ, called its zero.
A topological space $\left(V_{\mathrm{K}}, \tau\right)$, with ground set a vector space V_{K}, and a topology τ compatible with the addition and external multiplication (scalar multiplication) of V_{K}, is called a topological vector space. We assume familiarity with some elements of General Topology (GT) and Topological Vector Spaces (TVS), and so freely employ results on (continuity, net convergence, filter of neighbourhoods, $\mathrm{N}_{\theta}(\tau)$, seminorms, etc, etc) from GT and TVS. Of course, more than 75% of the subject of TVS is undiluted, naked, unadulterated GT.
If on the vector space $V_{\mathrm{K}}, p: V_{\mathrm{K}} \rightarrow \mathbb{R}$ is a seminorm, p induces on V_{K} the pseudometric
$d p: V_{\mathrm{K}} \times V_{\mathrm{K}} \rightarrow \mathbb{R}$
$(v, w) \mapsto p(v-w)$
The topology $\tau_{d p}$, of this pseudometric is called the topology of p, and here denoted τ_{p}.
FACT 1 (TVS) [1] τ_{p} is a vector topology. ///
The modulus / absolute value, $\left|\mid\right.$, on $K=\mathbb{C} / \mathbb{R}$ is a seminorm (indeed, a norm); its topology $\tau_{K}=\tau_{\mathbb{E}} / \tau_{\mathbb{R}}$ is called the usual topology of $\mathrm{K}=\mathfrak{C} / \mathbb{R}$. By FACT 1, above $(\mathrm{K},+, 0))_{\mathrm{K}}, \tau_{| |}=\left(\mathrm{K}, \tau_{\|}\right)$is a topological vector space. Observe that the zero of this space is 0 ; don't mix it up with the notation $\theta . F A C T: \tau_{\mathrm{K}}=\tau_{\|}$. In what follows, the topology on K shall always be τ_{K}. Let I, X be non-empty sets. If I is directed by \leq, we here write $\left(x_{i}\right)_{i \in(I, \leq)}$ for a net in X based on the directed set (I, \leq). If $(X$, $\tau)$ is a topological space, $x_{0} \in X$, and a net $\left(x_{i}\right)_{i \in(I, \leq)}$ in X [| we also say in $\left.(X, \tau) \mid\right]$ converges [|also say τ-converges $\left.\mid\right]$ to x_{0}, we may write
$x_{i} \xrightarrow{\tau} x_{0}$
Example If p is a seminorm on the vector space V_{K}, then τ_{p} is a vector topology on V_{K} and $\left(V_{\mathrm{K}}, \tau_{p}\right)$ is a topological vector space. If $v_{0} \in V_{\mathrm{K}}$ and a net $\left(x_{i}\right)_{i \in(I, \leq)}$ in $V_{\mathrm{K}} \tau_{p}$-converges to v_{0}, we may write $x_{i} \xrightarrow{\tau_{p}} v_{0}$. A popular instance is
$x_{i} \xrightarrow{\tau_{p}} \theta$
where θ is the zero of V_{K}. If $\left((V,+, \theta)_{\mathrm{K}}, \tau\right)=\left(V_{\mathrm{K}}, \tau\right)$ is a topological vector space a net $\left(x_{i}\right)_{i \in(I, \leq)}$ in $\left(V_{\mathrm{K}}, \tau\right)$ converging to θ is called a null net (or, a τ-null net) and, of course, we write
$x_{i} \xrightarrow{\tau} \theta$.
If (X, τ) is a topological space and $x_{0} \in X$, we denote by $\mathrm{N}_{x 0}(\tau)$ the filter of neighbourhoods of x_{0}. Definition : (GT) For topological spaces (X, τ) and $\left(X^{\prime}, \tau^{\prime}\right), x_{0} \in X$, and $f:(X, \tau) \rightarrow\left(X^{\prime}, \tau^{\prime}\right)$ a map [|function|] we say that f is continuous at x_{0} [| f is $\left(\tau, \tau^{\prime}\right)$-continuous at $\left.x_{0} \mid\right]$ provided for every $W \in \mathrm{~N}_{f(x))}\left(\tau^{\prime}\right)$ there exists $U \in \mathrm{~N}_{x 0}(\tau)$ such that
$f(U) \subseteq W$.

Corresponding Author: Sunday O., Email: soluyemi19@yahoo.com, Tel: +2348160865176
Journal of the Nigerian Association of Mathematical Physics Volume 60, (April - June 2021 Issue), 5 -8
[| Equivalently: For every $\left.W \in \mathrm{~N}_{f(x 0)}(\tau) f^{-1}(W) \in \mathrm{N}_{x 0}(\tau) \mid\right]$. If f is continuous at every $x \in X$, then f is simply called a continuous map [| a continuous function |].
FACT $2(\mathbf{G T})$ Let (X, τ) and $\left(X^{\prime}, \tau^{\prime}\right)$ be topological spaces and $x_{0} \in X$. A function $f:(X, \tau) \rightarrow\left(X^{\prime}, \tau^{\prime}\right)$ is continuous at x_{0} if and only if for every net $\left(x_{i}\right)_{i \in(I, \leq)}$ in X, τ-converging to x_{0}, the net $\left(f\left(x_{i}\right)\right)_{i \in(I, \leq)} \tau^{\prime}$-converges to $f\left(x_{0}\right)$ [| if and only if
$\left.x_{i} \xrightarrow{\tau} x_{0} \Rightarrow f\left(x_{i}\right) \xrightarrow{\tau^{\prime}} f\left(x_{0}\right) \mid\right] . / / /$
FACT $3(\mathbf{G T})$ Let $(X, \tau),\left(X^{\prime}, \tau^{\prime}\right)$ and $\left(X^{\prime \prime}, \tau^{\prime \prime}\right)$ be topological spaces, and
$(X, \tau) \xrightarrow{f}\left(X^{\prime}, \tau^{\prime}\right)$,
$\left(X^{\prime}, \tau^{\prime}\right) \xrightarrow{g}\left(X^{\prime \prime}, \tau^{\prime \prime}\right)$
continuous maps. Then, their composition
$(X, \tau) \longrightarrow \stackrel{g \circ f}{\longrightarrow}\left(X^{\prime \prime}, \tau^{\prime \prime}\right)$
is also continuous. ///
FACT 4 If $(V,+, \theta)_{(\mathbb{K},+,, 0,1)}=V_{\mathrm{K}}$ is a vector space, and p a seminorm on V_{K}, then $p(\theta)=0$. ///
FACT 5 Let $(V,+, \theta)_{\mathrm{K}}$ and $\left(V^{\prime},+, \theta^{\prime}\right)_{\mathrm{K}}$ be vector spaces, and $f:(V,+, \theta)_{\mathrm{K}} \rightarrow\left(V^{\prime},+, \theta^{\prime}\right)_{\mathrm{K}}$ a linear map. Then, $f(\theta)=\theta^{\prime}$. ///
Let X be a non-empty set and Φ a collection of topologies on X. The coarset of all topologies on X finer than each member of Φ. Is called the supremum of Φ and denoted $\vee \Phi$. We have
FACT $6(\mathbf{G T})$ Let (X, τ) be a topological space, X^{\prime} a non-empty set, Φ a collection of topologies on X^{\prime} and $f:(X, \tau) \rightarrow X$ ' a map. Then, f is $(\tau, \vee \Phi)$-continuous if and only if f is $\left(\tau, \tau^{\prime}\right)$-continuous for each $\tau^{\prime} \in \Phi$. ///
FACT 7 (TVS) If V_{K} is a vector space, and Φ is a collection of vector topologies on V_{K}, then the supremum $\vee \Phi$ is a vector topology. ///
Let V_{K} be a vector space, and P a collection of seminorms on V_{K}. By FACT 1, τ_{p} is a vector topology for each $p \in P$. Hence, by FACT 7, $\underset{p \in P}{\vee} \tau_{p}=\vee\left\{\tau_{p}: p \in P\right\}$, here denoted τ_{p}, is a vector topology.
The results, FACT1 - FACT 7 recalled for ease of reference may be used in what follows with or without citation.
2 CONTINUOUS SEMINORMS We curl up four results from GT and TVS for ease of reference.
FACT 1 (TVS) Let $\left((V,+, \theta)_{K}, \tau\right)=\left(V_{K}, \tau\right)$ be a topological vector space and $p:\left(V_{\mathrm{K}}, \tau\right) \rightarrow\left(\mathbb{R}, \tau_{\mathbb{R}}\right)$ a seminorm. p is $\left(\tau\right.$, $\left.\tau_{\mathbb{R}}\right)$ -contin- uous if and only if it is $\left(\tau, \tau_{\mathbb{R}}\right)$-continuous at θ. ///
FACT $2(\mathbf{G T})$ For nets $\left(x_{i}\right)_{i \in(I, \leq)}$ and $\left(y_{i}\right)_{i \in(I, \leq)}$ in \mathbb{R} based on same directed set (I, \leq), if
(i) $x_{i} \xrightarrow{\tau_{\mathrm{R}}} 0$
(ii) $0 \leq y_{i} \leq x_{i}$ for all $i \in I$,
then
$y_{i} \xrightarrow{\tau_{\mathrm{R}}} 0$
also. ///
FACT $3(\mathbf{G T})\left(\right.$ Net Convergence in $\left.\left(\mathbb{R}, \tau_{\mathbb{R}}\right)\right)$ For nets $\left(x_{i}\right)_{i \in(I, \leq)}$ and $\left(y_{i}\right)_{i \in(I, \leq)}$ in $\left(\mathbb{R}, \tau_{\mathbb{R}}\right)$ based on same directed set (I, \leq), and $x, y \in \mathbb{R}$,
$x_{i} \xrightarrow{\tau_{\mathrm{R}}} x$
and
$y_{i} \xrightarrow{\tau_{\mathrm{R}}} y$
jointly imply
$x_{i}+y_{i} \xrightarrow{\tau_{\mathrm{R}}} x+y . / / /$
Let V_{K} be a vector space, $\alpha>0, p$ a seminorm on V_{K}, and $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}(n \in \mathbb{N})$ a finite collection of seminorms on
V_{K}. Define, as follows, $\alpha p, P_{\text {sum }}$ and $P_{\text {max }}$.
$\alpha_{P}(v)=\alpha(p(v))$ for $v \in V_{\mathrm{K}}$, and pa seminorm
$P_{\text {sum }}(v)=p_{1}(v)+p_{2}(v)+\ldots \ldots+p_{n}(v)$ for $v \in V_{\mathrm{K}}$
and
$P_{\max }(v)=\max _{1 \leq i \leq n} p_{i}(v)$ for $v \in V_{\mathrm{K}}$.
Journal of the Nigerian Association of Mathematical Physics Volume 60, (April - June 2021 Issue), 5 -8

FACT 4 (TVS) [2] Let V_{K} be a vector space, $\alpha>0, p$ a seminorm on V_{K}, and $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}(n \in \mathbb{N})$ a finite collection of semi- norms on V_{K}. Then, $\alpha p, \mathrm{P}_{\text {sum }}$ and $\mathrm{P}_{\max }$ are also seminorms on $V_{\mathrm{K} .}$ ///
We now state and establish our only theorem of this section.
Note 15 Let $\left((V,+, \theta)_{K}, \tau\right)=\left(V_{\mathrm{K}}, \tau\right)$ be a topological vector space.
(i) If p is a continous seminorm on $\left(V_{\mathrm{K}}, \tau\right)$ and $\alpha>0$, then αp is also a continous seminorm.
(ii) If p, q are seminorms on $\left(V_{\mathrm{K}}, \tau\right), p \leq q$, and q continuous, so is p.
(iii) if $P=\left\{p_{1}, p_{2}, \ldots ., p_{n}\right\}(n \in \mathbb{N}, n \geq 2)$ is a finite collection of continuous seminorms on $\left(V_{\mathrm{K}}, \tau\right)$, then $P_{\text {sum }}$ is also continuous.
(iv) If $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}(n \in \mathbb{N}, n \geq 2)$ is a finite collection of continuous seminorms on $\left(V_{\mathrm{K}}, \tau\right), P_{\max }$ is also continuous. Proof (i): That αp is a seminorm is one of the claims of FACT 4. It therefore suffices by FACT 1 to show that αp is continuous at θ. So, suppose $\left(x_{i}\right)_{i \in(I, \leq)}$ is a net in $\left(V_{\mathrm{K}}, \tau\right)$ and that
$x_{i} \xrightarrow{\tau} \theta$
By the assumed continuity of p, from $\left(\Delta^{1}\right)$ and 1.2 follows that
$p\left(x_{i}\right) \xrightarrow{\tau_{\mathrm{R}}} p(\theta)=0$
And from arguments in Elementary Real Analysis, $\left(\Delta^{2}\right)$ gives
$(\alpha p)\left(x_{i}\right)=\alpha p\left(x_{i}\right) \xrightarrow{\tau_{\mathrm{R}}} 0=\alpha \cdot 0=\alpha \cdot p(\theta)=(\alpha p)(\theta)$
(ii): By FACT 1 , it suffices to show that p is continuous at θ. So, let $\left(x_{i}\right)_{i \in(I, \leq)}$ be a null net in $\left(V_{K}, \tau\right)$. By the continuity of q, it follows from 1.2 that
$q\left(x_{i}\right) \xrightarrow{\tau_{\mathrm{R}}} q(\theta)=0$
The hypothesis $p \leq q,\left(\Delta^{3}\right)$ and FACT 2 give
$p\left(x_{i}\right) \xrightarrow{\tau_{\mathrm{R}}} 0=p(\theta)$.
iii: It suffices to establish the claim here for $n=2$. So, suppose $P=\left\{p_{1}, p_{2}\right\}$. By FACT $4, p_{1}+p_{2}$ is a seminorm on V_{K}. Let $\left(x_{i}\right)_{i \in(I, \leq)}$ be a null net in $\left(V_{\mathrm{K}}, \tau\right)$. By hypothesis, p_{1} and p_{2} are continuous, and so continuous at θ. Hence,
$p_{1}\left(x_{i}\right) \xrightarrow{\tau_{\mathrm{R}}} p_{1}(\theta)=0$
and
$p_{2}\left(x_{i}\right) \xrightarrow{\tau_{\mathrm{R}}} p_{2}(\theta)=0$
By \FACT 3, therefore,
$\left(p_{1}+p_{2}\right)\left(x_{i}\right)=p_{1}\left(x_{i}\right)+p_{2}\left(x_{i}\right) \xrightarrow{\tau_{\mathrm{R}}} 0+0=0$
$=p_{1}(\theta)+p_{2}(\theta)=\left(p_{1}+p_{2}\right)(\theta)$.
(iv): Clearly, $P_{\max } \leq P_{\text {sum }}$, and so the claim here follows from (ii) and (iii). ///

3 LINEAR MAP/FUNCTIONAL AND CONTINUITY Let V_{K} be a vector space and p a seminorm on V_{K}. Recall that in Section 1 we denote by τ_{p} the pseudometric topology of the pseudometric
$d p: \quad V_{\mathrm{K}_{\mathrm{X}}} V_{\mathrm{K}} \rightarrow \mathbb{R}$
$(v, w) \mapsto P(v-w)$
And called it the topology of p. We have from (Δ) and net convergence in GT,
FACT 1 If $\left.p: V_{\mathrm{K}} \rightarrow((\mathbb{R},+, \cdot, 0,1)),, \tau_{\mathbb{R}}\right)$ is a seminorm on the vector space $V_{\mathrm{K}}, x_{0} \in V_{\mathrm{K}}$, and $\left(x_{i}\right)_{i \in(I, \leq)}$ is a net in V_{K}, then,
$x_{i} \xrightarrow{\tau_{p}} x_{0}$
if and only if
$p\left(x_{i}-x_{0}\right) \xrightarrow{\tau_{R}} 0 / / /$
Note 22 Let V_{K} and $V_{\mathrm{K}^{\prime}}$ be vector spaces, p a seminorm on $V_{\mathrm{K}^{\prime}}$ and $f: V_{\mathrm{K}} \rightarrow V_{\mathrm{K}^{\prime}}$ a linear map. Then, the composition p o $f: V_{\mathrm{K}} \rightarrow \mathbb{R}$ is a seminorm on V_{K}.
Proof Positivity For $v \in V_{\mathrm{K}}$,
$(p$ o $f)(v)=p(f(v)) \geq 0$
by the positivity of p.
Journal of the Nigerian Association of Mathematical Physics Volume 60, (April - June 2021 Issue), 5 -8

Absolute Homogeneity For $v \in V_{\mathrm{K}}$,
$(p \circ f)(\lambda v)=p(f(\lambda v))=p(\lambda f(v))$
$=|\lambda| p(f(v))=|\lambda|(p$ of $)(v)$.
\backslash Triangle Inequality Let $v, w \in V_{\mathrm{K}}$. Then,
$(p \circ f)(v+w)=p(f(v+w))=p(f(v)+(f(w))$
which by the Triangle Inequality applied to p.
$\leq p(f(v))+p(f(w))=(p \circ f)(v)+(p \circ f)(w) . / / /$
FACT 3 (TVS) Let $\left((V,+, \theta)_{\mathrm{K}}, \tau\right)=\left(V_{\mathrm{K}}, \tau\right)$ and $\left(\left(V^{\prime},+, \theta^{\prime}\right)_{\mathrm{K}}, \tau^{\prime}\right)=\left(V_{\mathrm{K}}{ }^{\prime}, \tau^{\prime}\right)$ be topological vector spaces and $f:\left(V_{\mathrm{K}}, \tau\right) \rightarrow$ $\left(V_{\mathrm{K}}{ }^{\prime}, \tau^{\prime}\right)$ a linear map. Then, f is continuous if and only if it is continuous at θ. ///
FACT 4 (TVS) Let W_{K} be a vector space, and p a seminorm on W_{K}. Then, $p:\left(W_{\mathrm{K}}, \tau_{p}\right) \rightarrow\left(\mathbb{R}, \tau_{\mathbb{R}}\right)$ is continuous. ///
Next, we have
Note $35 \operatorname{Let}\left((V,+, \theta)_{\mathrm{K}}, \tau\right)=\left(V_{\mathrm{K}}, \tau\right)$ be a topological vector space, p a smeinorm on a vector space $\left(V^{\prime},+, \theta^{\prime}\right)_{\mathrm{K}}=V_{\mathrm{K}^{\prime}}$, and $f:\left(V_{\mathrm{K}}, \tau\right) \rightarrow\left(V_{\mathrm{K}}{ }^{\prime}, \tau_{p}\right)$ a linear map. Then, f is continuous if and only if the seminorm $p \mathrm{o} f$ is continuous.
Proof \Rightarrow : Hypothesis f is continuous.
By FACT 4, p is ($\tau_{p}, \tau_{\mathbb{R}}$) continuous. By 1.3, therefore, p of is contin- uous.
\Leftarrow : Hypothesis The seminorm (Note 2) p of is continuous.
We want to show that the linear map f is $\left(\tau, \tau_{p}\right)$-continuous. By FACT 3, it suffices to show that f is $\left(\tau, \tau_{p}\right)$-continuous at θ. So (1.2), let $\left(x_{i}\right)_{i \in(I, \leq)}$ be a net in $\left(V_{K}, \tau\right)$ converging to θ. That is, let
$x_{i} \xrightarrow{\tau} \theta$
By the Hypothesis and 2.1, we have from $\left(\Delta^{1}\right)$,
$(p \circ f)\left(x_{i}\right) \xrightarrow{\tau_{R}}(p \circ f)(\theta)=p_{(} f_{(\theta))}=p\left(\theta^{\prime}\right)=0$.
That is,
$p\left(f_{\left(x_{i}\right)} \xrightarrow{\tau_{R}} 0\right.$.
That is,
$p\left(f_{\left(x_{i}\right)}-\theta^{\prime}\right) \xrightarrow{\tau_{R}} 0$.
That is,
$p\left(f_{\left(x_{i}\right)}-f(\theta)\right) \xrightarrow{\tau_{R}} 0$
But by FACT 1, (Δ^{2}) means
$f_{\left(x_{i}\right)} \xrightarrow{\tau_{p}} f(\theta)$
Clearly, $\left(\Delta^{1}\right),\left(\Delta^{3}\right)$ and 1.2 , jointly say that f is $\left(\tau, \tau_{p}\right)$-continuous at θ. ///
COROLLARY 6 [5] Let $\left((V,+, \theta)_{\kappa}, \tau\right)=\left(V_{\mathrm{K}}, \tau\right)$ be a topological vector space, P a collection of seminorms on a vector space $\left(V^{\prime},+, \theta^{\prime}\right)_{\mathrm{K}}=V_{\mathrm{K}}{ }^{\prime}$, and $f:\left(V_{\mathrm{K}}, \tau\right) \rightarrow\left(V_{\mathrm{K}}{ }^{\prime}, \tau_{P}\right)$ a linear map. Then, f is continuous if and only if the seminorms
p o $f:\left(V_{\mathrm{K}}, \tau\right) \rightarrow\left(\mathbb{R}, \tau_{\mathbb{R}}\right)$,
$p \in P$ are each continuous.
Proof : $\tau_{P}=\vee\left\{\tau_{p}: p \in P\right\}$. The claim is immediate from Note 3 above and 1.6. ///
COROLLARY 7 Let $f:\left(V_{\kappa}, \tau\right) \rightarrow\left(\mathrm{K}_{\kappa}, \tau_{\mathrm{K}}\right)$ be a linear functional on the topological vector space $\left(V_{\mathrm{K}}, \tau\right)$. Then, f is continuous if and only if $|f|$ is continuous. ///

REFERENCE

[1] Sunday Oluyemi, The pseudometric topology of a smeinorm is a vector topology, Transactions of NAMP, Volume 12 (July - September, 2020Issue). Pp. 1 - 10.
[2] Sunday Oluyemi, Some short notes on the topology of the seminorm, Transactions of NAMP, Volume 12 (July September 2020 Issue) Pp. 11-16.
[3] John Horvath, Topological Vector Spaces and Distributions I, Addison-Wesley 1966.
[4] Albert Wilansky, Topology for Analysis, Ginn, 1970.
[5] Albert Wilansky, Modern Mehtods in Topological Vector Spaces, McGrawHill 1976.

